
Sparse Data: Perspectives on Learning from
Limited Information

Joshua Yeats

T
H

E

U N I V E R
S

I
T

Y

O
F

E
D I N B U

R
G

H

4th Year Project Report
Artificial Intelligence
School of Informatics

University of Edinburgh
2025

Abstract
This dissertation evaluates three distinct methodologies, program synthesis, large lan-
guage model (LLM)-based rule generation, and reinforcement learning (RL), for their
effectiveness in generating interpretable rules to guide decision-making in dynamic
clinical environments. The research addresses a fundamental challenge: Can systems be
developed that effectively learn from noisy and sparse health data while producing in-
terpretable solutions that enhance understanding and improve patient outcomes? With a
focus on Type 1 diabetes, this work explores novel approaches to extract meaningful pat-
terns from sparse data while maintaining the transparency needed for decision-making.
Statistical SYGUS-based program synthesis achieved minimal accuracy due to its in-
ability to model complex health data variability. LLM-based approaches demonstrated
significant potential with high accuracy while maintaining human-readable outputs.
Reinforcement learning with Q-learning synthesis successfully developed adaptive
insulin dosing policies through simulated environments, achieving stable glucose time-
in-range metrics. Each approach is assessed for its ability to balance transparency
with adaptability, revealing unique strengths and limitations. The findings suggest
that a hybrid framework combining LLM knowledge with retrospective reinforcement
learning presents a promising direction for future research in this domain.

i

Research Ethics Approval
This project obtained approval from the Informatics Research Ethics committee.
Ethics application number: 166955
Date when approval was obtained: 2024-09-30

Declaration
I declare that this thesis was composed by myself, that the work contained herein is my
own except where explicitly stated otherwise in the text, and that this work has not been
submitted for any other degree or professional qualification except as specified.

(Joshua Yeats)

ii

Acknowledgements
I would like to thank my dissertation supervisor, Elizabeth Polgreen, for her guidance
and support throughout this process. I am also thankful to my family and friends, whose
encouragement has sustained me during this journey. Lastly, I would like to thank Cult
Coffee for keeping me caffeinated through all of this.

iii

Table of Contents

1 Introduction and Motivation 1

2 Background 2
2.1 Data Analysis in Type 1 Diabetes . 2
2.2 Program Synthesis . 3

2.2.1 Classification of Program Synthesis Approaches 4
2.3 Syntax-Guided Synthesis (SyGuS) 4

2.3.1 Core Components of SyGuS 4
2.4 Key Synthesis Methodologies . 5

2.4.1 SyGuS Workflow and Iterative Refinement 6
2.4.2 Supporting Tools and Technologies 6

2.5 Large Language Models (LLMs) . 6
2.6 Reinforcement Learning . 7

3 Program Synthesis for Pattern Discovery 9
3.1 Problem Definition . 9
3.2 Data and Preliminary Experiments 9
3.3 Statistical SyGuS . 10

3.3.1 Statistical Analysis . 11
3.3.2 SyGuS Translation . 11
3.3.3 Function Signature Determination 12
3.3.4 Grammar Construction . 12
3.3.5 Constraint Generation . 14

3.4 Results . 15

4 LLM-Based Rule Generation and Validation 17
4.1 Problem Definition . 17
4.2 System Architecture . 18

4.2.1 Prompt Generation . 18
4.2.2 Rule Generation . 20
4.2.3 Validation Process . 21
4.2.4 Rule Analysis . 21

4.3 Results . 22

5 Reinforcement Learning for Synthesizing Logical Policies 25
5.1 Problem Definition . 26
5.2 Overview of RL Synthesis . 26

iv

5.2.1 Simulator Environment . 29
5.2.2 Simulator-Based Experiment 29
5.2.3 Results . 30
5.2.4 Simulation + Historical Data 32
5.2.5 Results . 32

6 Evaluation 35
6.0.1 Program Synthesis: Statistical SYGUS 35
6.0.2 LLM-Based Rule Generation 36
6.0.3 Reinforcement Learning: Q-Learning 36
6.0.4 Towards a Hybrid Approach Using Inverse Reinforcement

Learning . 37

7 Conclusion 38

Bibliography 41

A Dataset Description 45
A.1 Overview . 46

A.1.1 Data and Quality Assurance 46
A.2 Descriptive Statistics & Basic Patterns 46
A.3 Correlation Analysis and Relationship Structure 47

A.3.1 Glucose Response Correlations 47
A.3.2 Exercise Parameter Correlations 48

B Program Synthesis for Pattern Discovery 49
B.1 Initial Experiments . 50
B.2 Examples of Stat SyGuS Specifications 51

C LLM-Based Rule Generation and Validation 54
C.1 LLM Algorithm . 54
C.2 LLM User Prompt . 55
C.3 LLM System Prompt . 56
C.4 Output Structure . 57

D Reinforcement Learning for Synthesizing Logical Policies 58
D.1 Grammar-Based Policy Synthesis Algorithm 58

E Evaluation 59
E.1 Comparison Table . 59

v

Chapter 1

Introduction and Motivation

Problem: Can systems be developed that effectively learn from noisy and sparse
health data while producing interpretable solutions that enhance understanding
and improve patient outcomes? With a focus on Type 1 diabetes, this research
explores novel approaches to extract meaningful patterns from sparse data while
maintaining the transparency needed for decision-making.

Type 1 diabetes is a chronic autoimmune disease characterized by insulin deficiency
due to pancreatic beta cell destruction. Patients require lifelong insulin therapy, carefully
balancing doses to avoid both hypoglycemia (low blood glucose) and hyperglycemia
(high blood glucose) - each with its own immediate and long-term health risks.

The management of this condition generates substantial health data through continu-
ous glucose monitors (CGMs), insulin pumps, and patient self-reporting. However, this
data presents significant analytical challenges: it is sparse due to collection gaps, noisy
from measurement errors, and heterogeneous in its sources and formats. Despite these
limitations, effective analysis of this imperfect data could transform patient care and
outcomes.

Traditional machine learning approaches often falter with such data, typically requir-
ing large, dense datasets to build reliable models. Moreover, many advanced algorithms
operate as “black boxes,” providing predictions without transparent explanations - a
critical weakness in healthcare contexts where clinicians and patients need to understand
the reasoning behind recommendations.

The daily burden of managing Type 1 diabetes is considerable, affecting every aspect
of patients’ lives from work and school to social activities and exercise. An interpretable
system capable of learning from incomplete data could personalize treatment strategies,
provide actionable insights to both patients and healthcare providers, identify early
warning signs of complications, and reduce the cognitive load on individuals managing
this complex condition.

Interpretable solutions could enhance diabetes care, allowing providers to validate
recommendations and patients to understand their condition’s patterns. This trans-
parency builds trust, enables collaborative decision-making, eases regulatory approval,
and supports patient education. By clarifying connections between lifestyle, insulin,
and glucose outcomes, interpretable systems transform complex data into actionable
guidance that informs healthcare decisions.

1

Chapter 2

Background

2.1 Data Analysis in Type 1 Diabetes
Continuous glucose monitoring (CGM) has improved type 1 diabetes management by
delivering detailed, real-time insights into blood glucose levels [7]. Type 1 diabetes, an
autoimmune disorder marked by a complete lack of insulin production [4], demands
precise glycemic control to avert both acute complications and long-term consequences
[24]. Yet, achieving this control is complicated by factors such as variable insulin
absorption, diverse meal compositions, physical activity, stress, and circadian rhythms.
These challenges underscore the need for advanced analytical methods to fine-tune
insulin therapy and elevate patient outcomes.

Among these methods, machine learning stands out as a powerful approach for
tackling the complex, non-linear, and sequential nature of CGM data. Techniques like
recurrent neural networks (RNNs) and long short-term memory (LSTM) networks excel
at detecting temporal patterns in glucose readings. By weaving together historical
glucose data with contextual factors - such as carbohydrate intake, exercise, and insulin
doses - these models deliver accurate short-term predictions vital for proactive manage-
ment [11, 18]. Typically, they rely on extensive datasets, with studies leveraging 1 to 3
months of CGM data, amounting to 8,640 to 25,920 data points per patient [23].

Complementing machine learning, time series analysis offers another robust frame-
work for forecasting glucose trends. Methods like ARIMA (Autoregressive Integrated
Moving Average) break down CGM data into trend, seasonal, and noise components,
enabling precise short - term predictions [33]. In contrast, Kalman filters provide a
dynamic, recursive approach, adapting to the noise and rapid fluctuations in glucose
levels as new data emerges [8, 26]. These techniques typically require a few days
to weeks of CGM data, yielding thousands of points due to the high frequency of
measurements [19].

Statistical methods, such as linear and multiple regression, play a foundational role in
unraveling the relationships between blood glucose and key influencing factors. These
approaches allow clinicians and researchers to assess how diet, physical activity, and
insulin dosing shape glycemic variability [37, 15]. Given the wide individual differences
in type 1 diabetes responses, statistical tools are essential for pinpointing predictors
and crafting personalized treatment plans. For individual patients, the data needs often
mirror those of time series analysis- thousands of CGM points - though cross-sectional

2

Chapter 2. Background 3

studies, like those using the Pima dataset, differ in scope [2].
Physiological modeling, meanwhile, offers a deeper dive into the glucose-insulin

dynamics central to type 1 diabetes care. The Minimal Model, for instance, estimates
critical parameters like insulin sensitivity and glucose effectiveness using just 5 to 10
data points from an oral glucose tolerance test (OGTT) [9, 12]. This simplicity contrasts
with more comprehensive tools like the UVA/PADOVA Type 1 Diabetes Simulator,
which integrates multiple physiological processes to refine insulin dosing and support
artificial pancreas development. Built on extensive clinical data from over 20 patients,
this simulator harnesses thousands of points to simulate complex metabolic interactions
[13, 20]. When paired with CGM data, these models illuminate individual metabolic
profiles, paving the way for tailored and effective diabetes management.

Together, these analytical approaches - machine learning, time series analysis, sta-
tistical methods, and physiological modeling - address the multifaceted challenges of
type 1 diabetes. Their varying data demands, from minimal test samples to months of
continuous monitoring, reflect their unique strengths in optimizing insulin therapy and
improving patient well-being.

Challenges in Glucose Data Analysis for Type 1 Diabetes Despite these advanced
techniques, several challenges remain in the analysis of CGM data for type 1 diabetes:

• High Variability and Noise: Glucose levels in type 1 diabetes exhibit rapid
fluctuations and considerable variability, driven by factors such as inconsistent
insulin absorption, diverse meal compositions, physical activity, and stress. These
dynamics generate noisy datasets that hinder precise modeling and prediction,
posing a significant obstacle to reliable analysis [27].

• Need for Personalization: The marked heterogeneity among individuals with
type 1 diabetes renders one-size-fits-all models inadequate. Personalized ap-
proaches, which must account for unique insulin sensitivity, lifestyle factors,
and behavioral patterns, are critical yet difficult to achieve. Developing such
models demands extensive data integration and often manual adjustments, adding
complexity to the process [10].

• Data Integration and Quality: While CGM devices deliver continuous data
streams, their utility is tempered by issues like sensor inaccuracies, calibration
errors, and data gaps, all of which can erode model accuracy. Integrating CGM
readings with complementary sources - such as dietary records, exercise logs,
and insulin dosing schedules - is essential for a holistic analysis. However, this
integration introduces additional layers of complexity and potential error [27].

• Interpretability: Many advanced models, particularly machine learning tech-
niques like neural networks, produce highly accurate predictions but lack trans-
parency in how they arrive at their outputs. This “black box” nature limits their
interpretability, making it challenging for clinicians to trust and act on results or
explain them to patients. Enhancing model transparency is thus a key hurdle in
translating analytical insights into practical diabetes care [31].

2.2 Program Synthesis
Program synthesis is an automated process for generating executable code from high-
level specifications, examples, or constraints. By leveraging techniques from artificial

Chapter 2. Background 4

intelligence (AI), formal methods, and constraint solving, program synthesis aims to
produce correct, efficient, and semantically aligned programs [17]. A synthesized
program is often more interpretable than a typical black-box machine learning model,
as it encapsulates explicit rule-based logic and domain-specific knowledge that can be
validated, debugged, and extended.

2.2.1 Classification of Program Synthesis Approaches

Program synthesis approaches can broadly be divided into two main categories:
• Inductive Synthesis: Infers program logic directly from input-output examples.

By identifying and generalizing patterns observed in these examples, inductive
approaches excel in contexts where formal specifications are difficult to construct
but where plenty of training data is available.

• Deductive Synthesis: Constructs programs from formal logical specifications,
guaranteeing correctness by design. Deductive methods typically rely on proof
strategies or theorem-proving techniques to ensure that the synthesized program
satisfies all requirements.

2.3 Syntax-Guided Synthesis (SyGuS)
A major advancement bridging inductive and deductive techniques is Syntax-Guided
Synthesis (SyGuS). SyGuS incorporates syntactic constraints specified by formal gram-
mars, along with logical/semantic constraints, to reduce the search space to only those
candidate programs that are both syntactically valid and semantically correct [3].

Definition (SyGuS Problem)

A SyGuS problem is represented as a tuple ⟨T,G,φ,F⟩, where:
• T : A first-order theory,
• G: A context-free grammar,
• φ: A logical specification,
• F : A function symbol within φ.

A valid solution f must satisfy T |= φ[F 7→ f] and belong to the language defined
by the grammar G.

2.3.1 Core Components of SyGuS

Grammar Definition A context-free grammar (CFG) restricts the syntactic space of
potential programs:

Definition (Context-Free Grammar)

A context-free grammar G is formally defined by a tuple (T,NT,S,R), where:
• T : Set of terminal symbols,
• NT : Set of non-terminal symbols,
• S ∈ NT : The start symbol,
• R⊆NT ×(T ∪NT)∗: Production rules defining valid syntactic expansions.

Chapter 2. Background 5

Logical Constraints These constraints may be expressed in a logical formula, as input-
output examples, or as invariants. Candidate programs must satisfy these constraints for
semantic correctness.

Definition (Logical Constraints)

Logical constraints specify the semantic requirements that candidate programs
must meet. These constraints can be defined in various forms:

• Logical Formulas: For example, a constraint might be ∀x ∈ N, f (x)≥ 0.
• Input-Output Examples: For instance, specifying that f (2) = 4 and

f (3) = 9.
• Invariants: Properties that must hold true during the execution of the

program, such as sum(f (x))≤M for a given bound M.
A candidate program is considered semantically correct if it satisfies all the given
logical constraints.

Probabilistic Extensions to SyGuS Probabilistic Context-Free Grammars (PCFGs)
can help guide the synthesis process by attaching probabilities to production rules,
steering the search toward statistically more likely candidates:

Definition (Probabilistic Context-Free Grammar)

A PCFG is defined as a tuple (T,NT,S,R,P), where:
• T,NT,S,R follow standard CFG definitions,
• P : R→ [0,1] assigns probabilities to each rule, ensuring

∑
r∈R(A)

P(r) = 1, for all A ∈ NT.

The probability of a derived string is the product of the probabilities of the applied
rules.

2.4 Key Synthesis Methodologies
Several methodologies underpin modern program synthesis, enabling efficient explo-
ration and validation of candidate programs:

• Enumerative Search: Systematically enumerates candidate programs. Although
straightforward, it may suffer from combinatorial explosion. Practical systems
mitigate this with heuristics, iterative deepening, and pruning [29].

• Constraint Solving: Translates synthesis tasks into logical constraints for SAT or
SMT solvers, thereby satisfying syntactic and semantic constraints simultaneously
[3].

• Probabilistic Modeling: Machine learning or statistical models can prioritize
promising candidate programs based on learned patterns, focusing computational
effort where it is most likely to yield valid solutions [22].

Chapter 2. Background 6

2.4.1 SyGuS Workflow and Iterative Refinement

SyGuS typically follows an iterative cycle of generation, checking, and refinement:
1. Candidate Generation: Potential solutions are constructed via enumerative

search, symbolic methods, and/or probabilistic sampling (guided by PCFGs).
2. Constraint Checking: Automated solvers verify each candidate against syntactic

and semantic requirements, discarding invalid solutions.
3. Counterexample-Guided Inductive Synthesis (CEGIS): When a candidate

fails, the system produces a counterexample that pinpoints the failure, pruning
the search space and iterating until it converges on a correct, semantically valid
solution.

2.4.2 Supporting Tools and Technologies

• SKETCH: A system that allows partially specified programs with “holes,” which
are automatically completed by a synthesis engine. Widely used for hardware
design and algorithm synthesis [28].

• Deep Learning Integration: Neural models can guide the search process, im-
proving synthesis accuracy and efficiency for complex domains [5].

• CVC5: A state-of-the-art SMT solver that offers specific support for SyGuS tasks.
Its powerful constraint-solving abilities make it applicable in various formal
verification and automated reasoning scenarios. [6]

Program synthesis provides a automatically generating correct, efficient code from
high-level specifications. SyGuS plays a pivotal role by unifying syntactic and semantic
constraints, directing the search process more efficiently. Through the combined use of
enumerative search, constraint solving, probabilistic modeling, and iterative refinement
(often with CEGIS), synthesis systems can tackle complex domains while retaining
transparency and interpretability in the resulting programs.

2.5 Large Language Models (LLMs)
Large Language Models (LLMs) are advanced AI systems that process and generate
human-like text, making them valuable for natural language tasks. Their ability to
work with sparse data, particularly in specialized fields like healthcare, is a significant
advantage, allowing them to adapt with minimal examples.

LLMs are deep neural networks designed to understand and generate human-like
language by training on extensive text corpora. These models have revolutionized natu-
ral language processing (NLP) by setting new benchmarks in tasks such as translation,
summarization, and question answering.

Research suggests that LLMs acquire predictive power regarding syntax, semantics,
and ontologies inherent in human language corpora, though they may inherit biases
from their training data. A survey [32] notes that LLMs have evolved from statistical
models to neural models, with pre-trained language models (PLMs) showing strong
capabilities in solving various NLP tasks.

Transformer Architectures and Contextual Understanding LLMs are predominantly
built on transformer architectures, such as GPT and BERT, which leverage self-attention
mechanisms to capture long-range dependencies and nuanced semantic relationships

Chapter 2. Background 7

within text. The transformer model [30], consists of an encoder and decoder with
self-attention capabilities, enabling the model to weigh the importance of each token in
a sequence. This design is critical for maintaining robust contextual understanding.

For example, BERT [14], excels in tasks like sentiment analysis and entity recognition
due to its bidirectional processing of text. The ability to process and prioritize tokens
underpins LLMs’ success across various language tasks.

One of the significant benefits of LLMs is their capacity to perform well even when
domain-specific data is sparse. Their extensive pre-training on large, diverse datasets
develops a rich repository of language representations. These can be transferred to
specialized domains through techniques like transfer learning and fine-tuning.

Applications in Healthcare In healthcare, where annotated data can be scarce or sensi-
tive, LLMs demonstrate remarkable adaptability. They can be fine-tuned using minimal
domain-specific examples, leveraging pre-learned language features. This process is
facilitated by few-shot and zero-shot learning capabilities, allowing generalization to
new tasks with little to no additional training data.

A review [16] analyzed 51 articles and found that 77% incorporated prior knowledge
to augment small datasets, using methods like attention mechanisms and prompt-based
learning. A scoping review of 550 studies [35] highlighted LLMs’ role in diagnostics
and medical writing, while [38] noted improved medical reasoning through fine-tuning
with examination-style questions.

2.6 Reinforcement Learning
Reinforcement Learning (RL) is a machine learning paradigm in which an agent learns
to make sequential decisions by interacting with an environment. The primary objective
is to develop a policy that maximizes the cumulative reward over time through a process
of trial and error. Unlike supervised learning, which relies on labeled input/output pairs,
RL depends on a reward signal to guide the learning process, enabling the agent to learn
from its own actions and their consequences.

Agent-Environment Interaction and Markov Decision Processes At the core of RL
is the continuous interaction between the agent and its environment. This interaction is
typically modeled as a Markov Decision Process (MDP), defined by a tuple (S,A,P,R),
where:

• S is the set of states,
• A is the set of actions,
• P(s′|s,a) is the transition probability from state s to state s′ given action a, and
• R(s,a,s′) is the reward received when transitioning from state s to state s′ after

taking action a.
At each time step, the agent observes its current state, selects an action according to
its policy π(a|s), and the environment responds by transitioning to a new state while
providing a reward or penalty. This cycle of observation, action, and feedback allows
the agent to iteratively refine its strategy.

A fundamental challenge in this process is the exploration-exploitation dilemma.
The agent must balance exploitation selecting actions known to yield high rewards
with exploration trying new actions that might lead to even higher long-term rewards.

Chapter 2. Background 8

Successfully managing this trade-off is critical for efficient learning.

Policy Optimization Techniques To maximize cumulative rewards, several policy
optimization techniques are employed:

Value-based algorithms, such as Q-learning, focus on estimating the expected return
of state-action pairs through a function often denoted as Q(s,a). The policy is then
typically derived by selecting the action with the highest estimated Q-value. These
methods are particularly effective in discrete and relatively low-dimensional action
spaces.

Policy gradient methods take a different approach by directly optimizing the policy
πθ(a|s) with respect to the expected return. By adjusting the parameters θ, these
methods are well-suited for environments with high-dimensional or continuous action
spaces, where value-based methods might struggle.

Actor-critic approaches combine the strengths of both value-based and policy gradient
methods. The actor proposes actions based on the current policy, while the critic
evaluates these actions by estimating a value function. This dual mechanism helps
stabilize training and can accelerate convergence by providing more accurate feedback
during learning.

Function Approximation and Deep Reinforcement Learning In many practical ap-
plications, the state and action spaces can be enormous or even continuous, rendering
traditional tabular methods impractical. Function approximation techniques, such as
deep neural networks, are employed to estimate the value functions and policies. This ap-
proach, known as deep reinforcement learning, has enabled breakthroughs in areas such
as game playing, robotics, and autonomous systems by leveraging the representational
power of deep learning to handle complex, high-dimensional data.

Applications in Healthcare RL holds significant promise in the field of healthcare,
particularly in developing adaptive treatment strategies. For example, in the manage-
ment of Type 1 diabetes, continuous glucose monitoring systems generate data that is
often sparse, noisy, and subject to rapid fluctuations. RL can be applied to optimize
personalized treatment plans by continuously learning from patient-specific feedback.
This real-time adaptation allows the system to dynamically adjust treatment protocols
based on the patient’s current condition, potentially leading to improved outcomes and
more effective long-term management of chronic conditions.

RL Tools and Simulated Environments A number of tools and environments have
been developed to facilitate the design, testing, and benchmarking of RL algorithms.
OpenAI Gym is one such widely used toolkit that provides a standard API along with a
diverse set of environments, allowing researchers to implement and compare various
RL approaches with ease. In this dissertation, the ”simglucose” environment [36] is
utilized; it simulates glucose dynamics over time in response to insulin and carbohydrate
interventions. This environment is specifically designed to model the physiological
responses in patients with Type 1 diabetes, offering a realistic platform for developing
and evaluating adaptive treatment strategies using RL [21, 34, 1].

Chapter 3

Program Synthesis for Pattern
Discovery

This chapter presents a program synthesis technique using SyGuS and the tool CVC5
that aims to address the challenge of learning from noisy and sparse health data in Type
1 diabetes management. By creating interpretable functions through a guided search
process with reduced computational overhead, this approach aims to extract meaningful
patterns while maintaining interpretable rules for decision-making.

3.1 Problem Definition

Problem Let D = {(gi,wi, fi)}n
i=1 be a dataset of glucose measurements gi,

workout types wi ∈W , and a list of features fi. Let φ be the specification that
defines the desired properties and constraints for the synthesized function. Given
a grammar G for expressing relationships, synthesize a function F(fi,wi)→ gi
that satisfies the specification φ and captures meaningful relationships between
workout features and glucose that are true for D.

The problem is identifying and formalizing the key relationships in the dataset that
meaningfully connect workout features and glucose, and synthesize interpretable func-
tions. Using the Dataset (see Appendix A for full dataset description), a comprehensive
data processing pipeline is implemented that aims to identify key relationships within
the dataset. These relationships can be complex and multifaceted. Features like heart
rate zones, workout duration, time of day, and pre-workout glucose levels may all
influence post-exercise glucose responses. The grammar G provides formal constraints
on how these relationships can be expressed, ensuring that the synthesized function F
captures physiologically plausible and statistically significant patterns in the dataset D
while adhering to the specification φ. In addition, the specification φ will be defined for
each approach, but aims to capture functions that describe meaningful relationships in
the data.

3.2 Data and Preliminary Experiments
Initial experiments focused on using the tool CVC5 to create a function that can be
used on the data. A formal grammar was developed to guide CVC5 to create a function

9

Chapter 3. Program Synthesis for Pattern Discovery 10

that is good at classifying high/low glucose events (see Appendix B.1 for the complete
CVC5 file definition). While the function created did work, it did not represent true
learning since the grammar was specifically constructed to create this function.

Synthesized Function 1

(define-fun analyze_glucose ((glucose Int) (delta Int)
(insulin Int) (cho Int)) Int
(ite (and (> delta 0) (> cho 0)) 3

(ite (> insulin 0) 4
(ite (> glucose 180) 1

(ite (< glucose 70) 2 0)))))

This function implements a decision tree that categorizes glucose readings into five
patterns: normal (0), high glucose (1), low glucose (2), meal response (3), and insulin
response (4).

Synthesized Function 2

(define-fun basic_glucose ((glucose Int) (delta Int)) Int
(ite (> glucose 180) 1

(ite (< glucose 70) 2 0)))

This function classifies glucose readings into hyperglycemia (>180 mg/dL, returns
1), hypoglycemia (<70 mg/dL, returns 2), or normal (70-180 mg/dL, returns 0) using
nested if-else statements, although the delta parameter remains unused.

In these experiments, the problem was formalized as synthesizing a function f :
Z7→{0,1,2,3,4,5} which must satisfy a specification φ(f)≡

∧6
i=1 f (fi) = gi. Here,

the six inputs represent features - stable glucose, high glucose, low glucose, rapid
rise, meal response, and insulin response - and the output corresponds to one of six
glucose patterns. Initial decision-tree based functions, as demonstrated above, were
insufficient for capturing the complex interactions in the dataset, indicating that while
CVC5 can synthesize basic functions using explicit grammars and a small dataset, more
sophisticated approaches are needed to fully model the underlying relationships.

3.3 Statistical SyGuS
The Statistical SyGuS approach aims to automate the discovery of patterns in the
data in order to satisfy the central question by learning and synthesizing interpretable
functions. Let D = {(gi,wi, fi)}n

i=1 represent our dataset, where gi are blood glucose
measurements, wi ∈W are workout types, and fi are corresponding workout features.
Let di = (gi,wi, fi) denote a single data point within the dataset D. The statistical
analyses of the dataset inform candidate variable selection for the synthesis process,
directing the SyGuS algorithm toward the most promising search spaces.

This statistically-guided approach enables the synthesis of functions that accurately
capture relationships between workout features and glucose responses. By leveraging
statistical insights to constrain the search space, could significantly improve pattern
discovery efficiency while reducing computational requirements. The potential rela-
tionships and structure are explored in Appendix A.3, which presents a comprehensive
correlation analysis and characterization of the underlying relationship structures.

Chapter 3. Program Synthesis for Pattern Discovery 11

Overview of Statistical SyGuS

1. Data Preprocessing: Normalize features, impute missing values, handle
outliers

2. Statistical Analysis: Correlation matrix, hierarchical clustering, feature
mo- ments

3. Function Signature: Strong correlation (|r|> 0.7), φ : (fi, f j)→ fk
4. Grammar Construction: Linear (|r| < 0.9): expr ::= c1x1 + c2x2 −

Non-linear : µ < 0⇒ x1 < x2
5. Constraints: Value bounds: µ±36→Monotonic : r < 0⇒ x1 < x2
6. Synthesis: Execute CVC5 with grammar + constraints (timeout: 240s)
7. Analysis: Check if functions generated are useful

3.3.1 Statistical Analysis

The statistical analysis process encompasses three integrated stages: data preprocessing,
correlation analysis, and hierarchical clustering, each contributing directly to the SyGuS
framework. This process is conducted across all data points within the dataset.

Data preprocessing ensures dataset quality through normalization of numerical vari-
ables to standardized ranges, imputation of missing values using mean substitution, and
removal of outliers with z-scores exceeding the absolute value of 3. These steps directly
inform SyGuS constraint bounds through normalized ranges, creating a more robust
synthesis process aligned with inherent data distributions.

Correlation analysis reveals relationships between variables by computing the Pearson
correlation matrix, with significant associations identified where absolute correlation
coefficients exceed 0.5. These insights determine synthesis priorities and influence
grammar complexity in SyGuS. Strongly correlated variables receive prioritization in
the synthesis process, while the nature of relationships (linear or non-linear) guides
grammar construction to accurately reflect underlying data patterns.

The final hierarchical clustering stage organizes variables into meaningful groups
based on similarity, beginning with a correlation distance matrix followed by cluster
formation using Ward’s method to minimize within-cluster variance. Clustering validity
is confirmed through silhouette score calculation, measuring how well objects align with
their assigned clusters. Cluster membership directly informs variable grouping during
synthesis, treating variables within the same cluster as cohesive units and ensuring
synthesized functions respect inherent data relationships, ultimately enhancing model
accuracy and interpretability.

3.3.2 SyGuS Translation

The aforementioned data processing and analysis stages collectively inform the gen-
eration of SyGuS specifications. By preprocessing the data, analyzing correlations,
and clustering variables, we establish a robust foundation that guides the selection of
relevant variables, the construction of appropriate grammars, and the formulation of
meaningful constraints. This integration ensures that the synthesized functions are not
only mathematically sound but also aligned with the underlying data structures and
relationships, ultimately leading to more effective and interpretable solutions. The sta-
tistical analysis informs three key aspects of the SyGuS specification: variable selection,

Chapter 3. Program Synthesis for Pattern Discovery 12

grammar construction, and constraint generation. Each step is guided by correlations
and clustering insights from the data.

3.3.3 Function Signature Determination

Correlation strength dictates the function signature for synthesis, ensuring that signifi-
cant relationships are captured while remaining tractable.

Strong Correlations (|r jk|> 0.7) Let fi = (fi[1], fi[2], . . . , fi[m]) be the feature vector
at data point i (i = 1, . . . ,N), and let fi[j] be its jth element. If fi[j] and fi[k] are strongly
correlated (i.e., |r j,k|> 0.9), we seek a function F satisfying

10∧
i=1

(
F(fi[j]) = F(fi[k])

)
.

For instance, if maximum heart rate (f j) strongly correlates with glucose response (fk),
then F predicts fk solely from f j.

Moderate Correlations (0.5< |r jk|< 0.7) Let { j1, j2, . . . , jp} be the indices of features
moderately correlated with fk. Define F as

F : (fi[j1], fi[j2], . . . , fi[jp]) 7→ fi[k],

subject to
10∧

i=1

(
F(fi[j1], fi[j2], . . . , fi[jp]) = fi[k]

)
.

For example, if workout duration (f j1) and average glucose (f j2) moderately correlate
with fk, F combines these inputs to predict fk.

3.3.4 Grammar Construction

The grammar G in our SyGuS approach provides a formal language for expressing
physiological hypotheses. Function signatures derived from correlation analysis directly
inform grammar tier selection, ensuring appropriately expressive production rules that
match relationship complexity while maintaining physiological plausibility. These
production rules constrain the synthesized function F to plausible forms supported by
dataset D through a three-tiered grammar system based on statistical evidence.

Grammar Complexity Tiers

1. Simple Grammar: For strongly linear correlations (|r|> 0.9)
2. Medium Grammar: For moderate correlations with potential non-linear

components (0.5 < |r|< 0.9)
3. Complex Grammar: For weak or complex correlations requiring sophisti-

cated modeling

Chapter 3. Program Synthesis for Pattern Discovery 13

<expr> ::= <const>
| <var>
| <const> * <var>
| <expr> + <expr>
| <expr> - <expr>
| <expr> * <expr>
| abs(<expr>)

<var> ::= duration_minutes | avg_hr | hr_zone_hard | glucose_before_60min
| ... | any input variable

<const> ::= 0.0 | 1.0 | 2.0 | 0.5 | 0.1 | 0.01 | 0.001 | -<const>

Simple Grammar Tier (Strong Linear Correlations, |r|> 0.9) This grammar captures
linear relationships and basic interactions between variables. It’s suitable for strongly
correlated physiological variables where the relationship follows a linear pattern or
simple multiplicative effects.

<expr> ::= <term>
| <expr> + <expr>
| <expr> - <expr>
| if <bool> then <expr> else <expr>

<term> ::= <const>
| <var>
| <term> * <term>
| <const> * <term>
| abs(<term>)

<bool> ::= <expr> >= <expr>
| <expr> <= <expr>
| <expr> >= <const>
| <expr> <= <const>

<var> ::= duration_minutes | avg_hr | hr_zone_hard | glucose_before_60min
| ... | any input variable

<const> ::= 0.0 | 1.0 | 2.0 | 0.5 | 0.1 | 0.01 | 0.001 | -<const>

Medium Grammar Tier (Moderate Correlations, 0.5 < |r|< 0.9) This grammar ex-
tends the simple grammar with conditional expressions, enabling threshold-based
behavior common in physiological systems. It can represent relationships that change
qualitatively at certain threshold values (such as anaerobic threshold).

<expr> ::= <term>
| <expr> + <expr>
| <expr> - <expr>
| <expr> * <expr>
| <expr> / <expr>
| if <bool> then <expr> else <expr>

<term> ::= <const>
| <var>
| <term> * <term>
| <const> * <term>
| <term> / <const>
| abs(<term>)

<bool> ::= <expr> >= <expr>
| <expr> <= <expr>
| <expr> >= <const>
| <expr> <= <const>
| <bool> and <bool>

<var> ::= duration_minutes | avg_hr | hr_zone_hard | glucose_before_60min
| ... | any input variable

<const> ::= 0.0 | 1.0 | 2.0 | 0.5 | 0.1 | 0.01 | 0.001 | -<const>

Complex Grammar Tier (Weak or Complex Correlations, |r|< 0.7) This grammar
provides the highest expressiveness, adding division, nested arithmetic operations, and
compound boolean expressions. It can capture complex physiological mechanisms like
feedback loops, ratio-based relationships, and multi-threshold behaviors.

Chapter 3. Program Synthesis for Pattern Discovery 14

3.3.5 Constraint Generation

For each data point di = (gi,wi, fi), we generate constraints by selecting the relevant
features from fi (where x denotes the list of features). The constraints are designed
to reflect the inherent characteristics of the data while being robust to the noise and
sparsity typical of health data.

Statistical Moments Value bounds are defined using statistical thresholds to prevent
outputs that deviate significantly from observed data ranges. Let µ and σ be the mean
and standard deviation of the target feature y (e.g., gi). Then, for each di, the constraint
is given by:

⟨constraint-bound⟩ ::= µ−3σ≤ F(x)≤ µ+3σ,

where x represents the list of features extracted from fi.

Correlation Signs Monotonicity constraints enforce that if two features are positively
correlated, the function F(x) should not decrease as the correlated feature increases.
Formally, for any two feature values x1 and x2 (selected from x) with x1 > x2 and a
positive correlation (rx1y > 0), we require:

⟨monotonicity-constraint⟩ ::= x1 > x2 =⇒ F(x1)≥ F(x2).

Cluster Memberships Clustering groups features that behave similarly, ensuring con-
sistent function outputs within these groups to reduce unnecessary variability. If {xi,x j}
belong to the same cluster, the constraint is:

⟨cluster-constraint⟩ ::= F(xi,x j) = F(x j,xi),

with xi and x j being features from the list x for di.
These constraints are deliberately relaxed to accommodate the noise and sparsity

of health data, allowing the solver to find viable solutions while preserving realistic
physiological boundaries. The following example shows an input file constructed by
Stat SyGuS for the CVC5 solver, where each data point di contributes its own constraint
specification based on the selected features.

Average Heart Rate from Calories Grammar

(synth-fun avg_hr_from_calories ((calories Real)) Real
((Start Real (

(Constant Real)
(Variable Real)
(+ Start Start)
(* Start Start)
(* Start (* Start Start))

))))
(constraint (= (avg_hr_from_calories 1515.0) 138.743))
(constraint (= (avg_hr_from_calories 574.0) 143.778))
(constraint (= (avg_hr_from_calories 155.0) 111.41))
(constraint (= (avg_hr_from_calories 2307.0) 151.886))
(constraint (= (avg_hr_from_calories 987.0) 132.283))
(constraint (= (avg_hr_from_calories 621.0) 148.524))
(constraint (= (avg_hr_from_calories 2185.0) 159.751))
(constraint (= (avg_hr_from_calories 1231.0) 150.249))
(constraint (= (avg_hr_from_calories 970.0) 147.885))
(constraint (= (avg_hr_from_calories 1144.0) 149.897))
(check-synth)

Chapter 3. Program Synthesis for Pattern Discovery 15

Explanation: This specification aims to synthesize a function that predicts the
average heart rate based on calories burned during an activity. The grammar allows for
constants, variables, addition, multiplication, and nested multiplication. The constraints
provide example input-output pairs from real health data.

For a comprehensive overview of the technical specifications derived from this
process, please refer to Appendix B.2. The appendix contains more detailed technical
specifications that were used as inputs for the CVC5 solver.

3.4 Results
Using the aforementioned process layout to constrain the search space, before employing
CVC5 as the synthesis engine. Despite these attempts, the engine was unable to produce
meaningful results within the allocated 240-second timeout period. Although numerous
functions were generated, these functions were largely trivial and did not capture the
complex interactions inherent in the dataset. The constraint tolerances implemented -
necessary to ensure the synthesis process would complete - resulted in oversimplified
representations that failed to reflect the true, relationships in the data.

The following examples show functions that predict glucose levels, along with their
limitations. In the first example, the function estimates the glucose level at 120 minutes
based on measurements taken at 30, 60, and 90 minutes.

Example 1 (Temporal Prediction)

(define-fun func_one
((g30 Real) (g60 Real) (g90 Real)) Real
(+ (* 2.0 g90) (* (/ 1 2) (* g60 g30))))

This function uses a basic linear formula to combine the measurements. However,
it has several limitations. It ignores more complex relationships between the readings,
uses fixed coefficients without a clear basis, and does not take into account the sequence
of the measurements. Furthermore, it does not adjust for individual differences.

The second example predicts the maximum glucose level during exercise using the
mean and minimum glucose levels.

Example 2 (During Exercise)

(define-fun func_two
((mean Real) (min Real)) Real
(* mean (+ 1.0 (* 0.5 (/ min mean)))))

In this example, the relationship between the mean and maximum levels is overly
simplified. The formula uses a fixed scaling factor that may not capture the natural
variability observed during exercise.

The next example focuses on predicting a heart rate zone based on average heart rate,
maximum heart rate, and an indicator for a higher intensity zone.

Example 3 (Zone Prediction)

(define-fun func_three
((avg_hr Real) (max_hr Real) (hr_zone_hard Real)) Real
(* avg_hr (+ (* 1.0 hr_zone_hard) (* (/ 1 2) max_hr))))

Chapter 3. Program Synthesis for Pattern Discovery 16

This function uses a simple formula to estimate the heart rate zone. It does not
incorporate established boundaries or transitions between zones, and relies on fixed
coefficients that do not fully capture the gradual changes in heart rate responses. The
implemented data preprocessing steps offered some improvement over initial experi-
ments, which had relied solely on raw time series data processed alongside a predefined
grammar. Structuring the data and constraining the search space before employing
the CVC5 synthesis engine marginally increased the engine’s capacity to generate
functions within the specified 240-second timeout period. However, these refinements
were insufficient to overcome broader limitations, as the resulting models remained
overly simplistic, failing to adequately capture the intricate dynamics of the dataset.

These experimental results highlight substantial challenges in applying program syn-
thesis tools to complex, noisy datasets, especially in health-related contexts. Although
various functions were generated, the approach consistently produced overly simplistic
models incapable of capturing the nuanced interactions inherent in the data. The pri-
mary limitation stems from the difficulty in effectively constraining a vast search space
coupled with the inherent complexity of biological systems in health data. The rigid
constraints imposed by the synthesis framework inadequately represent multifaceted
temporal and physiological dynamics, ultimately proving incapable of accurately mod-
eling these subtle complexities. Consequently, the approach appears poorly suited for
this domain, where data noise and complexity exceed the current capabilities of the
synthesis framework. This research underscores the impracticality of directly translating
statistical insights into SyGuS specifications for health-related data, serving primarily
as an exploratory analysis rather than a practical solution.

Overall, these experiments clearly demonstrate that the approach employing Statisti-
cal SyGuS and the CVC5 synthesis engine does not sufficiently address the problem
defined earlier in this chapter, nor does it achieve the overarching objective outlined in
the introduction. Despite leveraging statistical analysis and grammar-guided synthesis
to manage search complexity, the resulting functions were overly simplistic and unable
to effectively model complex physiological interactions, particularly those relevant
to managing Type 1 diabetes. Thus, this synthesis approach does not provide truly
interpretable solutions capable of enhancing clinical understanding or improving patient
outcomes, emphasizing significant limitations of current program synthesis methods
when applied to real-world health data.

Chapter 4

LLM-Based Rule Generation and
Validation

Given the limitations identified in the previous chapter concerning Statistical SyGuS
and traditional program synthesis methods in handling complex, noisy health datasets,
this chapter proposes an alternative approach leveraging large language models (LLMs).
Specifically, it examines the potential of LLMs to generate verifiable grammar rules di-
rectly from datasets, aiming to replicate the benefits of formal synthesis while overcom-
ing its constraints. The proposed framework integrates data-driven grammar learning
with LLM-driven rule generation, facilitating structured data validation. By utilizing
LLMs, this method aims to derive rules that ensure data integrity with outputs that are
both interpretable and verifiable, achieving a balance between synthesis efficiency and
the formal guarantees typically provided by program synthesis.

4.1 Problem Definition

Problem Let D= {(gi,wi, fi)}n
i=1 be a dataset of blood glucose measurements gi,

workout types wi ∈W , and workout features fi. Synthesize a set of interpretable
rules R∗ such that each rule r ∈ R∗ accurately describes the relationship between
workout characteristics and blood glucose responses that are true for D.

The primary challenge lies in developing effective prompt engineering functions
capable of translating glucose-workout datasets into suitable inputs for guiding LLMs
in discovering meaningful, accurate patterns. The resulting rule set R∗ should clearly
describe how various workout features - including intensity, duration, and timing -
influence blood glucose responses across different exercise types. These rules must
ensure syntactic correctness and semantic relevance, providing insights comparable
to traditional formal synthesis methods but with improved scalability and accessibil-
ity. Furthermore, the framework incorporates automated validation mechanisms to
rigorously verify the generated rules against the data, distinguishing genuine dataset
relationships from spurious correlations or model hallucinations.

17

Chapter 4. LLM-Based Rule Generation and Validation 18

4.2 System Architecture
The system architecture employs a DeepSeek-r1 14B language model to implement a
structured workflow for rule generation and validation. The process begins with dataset
ingestion, follows through prompt creation and rule generation according to a grammar,
and culminates in systematic validation of each rule against test data. This end-to-
end pipeline enables automated discovery and verification of meaningful relationships
between workout characteristics and glucose responses, while maintaining logical
consistency through formal validation procedures (see Algorithm C.1 in Appendix).

Figure 4.1: The diagram depicts the DeepSeek-r1 14B verification pipeline from CSV
inputs through prompt generation, rule creation, test validation, and pattern analysis,
showing the transformation of raw data into actionable insights.

4.2.1 Prompt Generation

The prompt generation process involves analyzing input data, structuring a partial
grammar, and learning underlying patterns to represent the dataset’s properties. This
section provides a detailed breakdown of each step.

Data Analysis The process begins with a comprehensive analysis of the input dataset
to uncover its foundational characteristics. The analysis focuses on the following
objectives:

• Identify Column Types: Classify each column as numeric, categorical,
datetime, or another type based on its content.

• Extract Statistical Properties: Compute metrics such as mean, median, and
standard deviation to describe the data’s distribution.

• Detect Correlations: Quantify relationships between variables using statistical
methods to reveal interdependencies.

• Learn Structural Patterns: Identify recurring structures, such as dependencies
or hierarchical relationships, within the dataset.

Grammar & Relationship Strucutre The grammar is encoded in JSON format, cap-
turing both column-specific details and inter-column relationships. The schema below
outlines the structure, followed by detailed explanations of its components:

• Columns: Each column is described by the following attributes:

Chapter 4. LLM-Based Rule Generation and Validation 19

– Name: A unique identifier (e.g., activity type, duration minutes).
– Data Type: The column’s type (e.g., numeric, categorical, datetime).
– Value Constraints: For numeric columns, the range of permissible values

(e.g., duration minutes spans [15.0,120.0]).
– Unique Values: For categorical columns, the set of possible values (e.g.,
activity type: ["Running", "Cycling", "Swimming", "Walking",
"HIIT"]).

– Required Flag: A boolean indicating whether null values are allowed (e.g.,
glucose after 60min: false).

• Relationships: Inter-column connections are captured as:
– Dependencies: Functional dependencies where one column determines

another (e.g., activity type influences hr zone moderate).
– Correlations: Numeric relationships above a threshold (e.g., calories

correlates with duration minutes at 0.85).

Grammar & Relationship Strucutre

{
"columns": {
"column_name": {
"type": "data_type",
"unique_values": ["value1", "value2", ...],
"min_value": min_value,
"max_value": max_value,
"required": true/false

},
...

},
"relationships": {
"dependencies": {
"column_A": ["column_B", "column_C", ...],
...

},
"correlations": {
"column_X": [

["column_Y", correlation_value],
...

],
...

}
}

}

Grammar Learning Process The grammar learning process is defined as a function G
that maps D to a tuple of type inferences, range constraints, and a correlation matrix:

G : D→ (T,R,C)

where:
• T = {t1, . . . , tm}: Inferred data types for each feature (e.g., categorical for
activity type, numeric for calories).

• R = {r1, . . . ,rk}: Range constraints for numeric features (e.g., [15.0, 120.0]
for duration minutes), where k ≤ m is the number of numeric columns.

• C = (ci j): The correlation matrix, where ci j is the correlation between features i
and j (e.g., 0.85 between calories and duration minutes).

Type Inference (T) Each t j ∈ T is inferred through a systematic process:
• Datetime Detection: Parse columns for datetime patterns (e.g., start time is
datetime).

• Numeric Detection: Identify columns convertible to numeric types (e.g., duration minutes,
calories).

Chapter 4. LLM-Based Rule Generation and Validation 20

• Categorical Detection: Recognize columns with a finite set of values (e.g.,
activity type via pandas.is string dtype).

• Other: Assign remaining columns to a catch-all category (typically unused here).

Range Constraints (R) For each numeric column k, the range constraint is:

rk = [min
k
,max

k
]

where:
• mink: The column’s minimum value, computed as values.min() after excluding

nulls (e.g., 100.0 for calories).
• maxk: The column’s maximum value, computed as values.max() after exclud-

ing nulls (e.g., 800.0 for calories).

Relationship Analysis (C) This step identifies two types of relationships:
1. Dependencies: Detect functional dependencies where column A determines

column B if each value in A maps to a unique value in B (e.g., activity type to
hr zone moderate).

2. Correlations: Record pairwise correlations for numeric columns exceeding a
threshold (e.g., 0.7), such as 0.85 between calories and duration minutes.

4.2.2 Rule Generation

The rule generation process builds on the prompt definition phase, leveraging large
language models (LLMs) to synthesize meaningful validation rules for each work-
out. These rules encapsulate logical expressions that reflect inherent relationships and
constraints within the features.

Let RD represent a set of data point rule pairs defined as:

RD = {(di,ri) | i = 1,2, . . . ,n} ,

where each rule ri corresponds to a data point di ∈ D and is defined as:

ri = (Asi,Ci) .

Definitions:

• si ⊆ {1,2, . . . ,m}: The subset of features selected for workout di.

• Asi =
∧

j∈si

(
f j
i = v j

i

)
: The antecedent conditions formed over the selected

features, where:
– f j

i represents the j-th feature for workout di,
– v j

i is the value of f j
i .

• Ci: The consequent condition associated with the workout.
The rule generation phase uses LLMs to transform data-driven patterns into coher-

ent logical rules that represent dataset characteristics. Structured outputs enforce a
predefined schema that minimizes ambiguity and improves rule quality. The LLM’s
prompt combines dataset-derived grammar (including column types, constraints, and
relationships) with the structured output schema (see Appendix C.2 for the full prompt

Chapter 4. LLM-Based Rule Generation and Validation 21

and structured output). This approach helps generate rules that align with the dataset’s
structure while maintaining consistent logical format. Processing data per workout
allows the LLM to capture local patterns. Using the ‘deepseek-r1:14b’ model via
Ollama’s chat interface, the system frames the LLM as an “expert exercise phys-
iologist and sports scientist” with guidelines on rule construction, formatting, and
reference ranges. The user prompt provides workout-specific data categories (time,
performance, heart rate, glucose metrics) and historical context of previous rules to
encourage novelty. Additional constraints guide the rule structure, including activity
type requirements, precision values, and logical operators (ALL, IMPLIES, AND, OR,
NOT). This grammar-informed, structured approach produces logically sound rules that
reflect both the dataset’s broad structure and specific details, making them valuable for
data validation and decision-making in real-world scenarios.

4.2.3 Validation Process

The validation process systematically evaluates each data point rule pair to ensure both
structural and semantic correctness.

For a data point di ∈ D and its corresponding rule ri, the validation function V is
applied as follows:

V (di,ri) =


True if ¬φ(di),

True if φ(di)∧ψ(di),

False if φ(di)∧¬ψ(di).

• φ(di): Evaluates whether the antecedent conditions are satisfied for workout di.
• ψ(di): Evaluates whether the consequent condition holds for workout di.

A rule ri is considered valid for data point di if V (di,ri) = True. The set of valid
workout-rule pairs Rv consists of all pairs (di,ri) where V (di,ri) = True.

Additional checks ensure that the rules align with domain-specific constraints by
validating physiological limits, such as permissible ranges for features like glucose
levels and heart rates, based on the minimum and maximum values observed in the
dataset. Additionally, rule consistency is maintained by ensuring that rules generated
from overlapping subsets do not produce conflicting outcomes when applied to the same
data points, thereby preserving the integrity of the rule set across the entire dataset.

By validating rules on subsets of D, this process ensures that the rules are robust and
applicable to diverse real-world scenarios without being overly restrictive or specific.

4.2.4 Rule Analysis

To evaluate the global performance of each rule across the entire dataset D, we apply the
rule validation function globally. Given a rule ri and the dataset D = {(gi,wi, fi)}n

i=1,
the global rule validation function is defined as Vg(ri,D) = 1

n ∑
n
j=1 I(V ((g j,w j, f j),ri) =

True). Here, I(·) is the indicator function that returns 1 if the validation result is true
and 0 otherwise, while n is the total number of data points. The output of Vg represents
the percentage of valid applications of the rule across the dataset, indicating the rule’s
overall accuracy. This global analysis ensures that the rules, originally validated locally,
also demonstrate robustness and reliability when generalized to the entire dataset.

Chapter 4. LLM-Based Rule Generation and Validation 22

4.3 Results
The generated logical rules, derived using the Deep Seek R1 14b model on an 80%-20%
train-test split, reveal both category-specific patterns and common variable dependencies.
While each rule is carefully tailored to capture the unique dynamics of its respective
exercise category, the overall analysis also highlights a repeated reliance on several core
features. This suggests opportunities for further exploration by incorporating a broader
range of variables. Below are a few examples of the extracted rules:

Functional Strength Training Pattern Rule

IF activity_type = ’Functional Strength Training’ AND
(duration_minutes > 40 OR calories > 350) AND
(hr_zone_easy < 0.1 OR hr_zone_fat_burn > 0.2)
THEN glucose_during_mean <= 7.8

Explanation: Longer duration or higher calorie burn sessions, especially when the
fat-burning zone is substantially engaged, are associated with lower mean glucose
during exercise.

Cycling Pattern Rule

IF activity_type = ’Cycling’ AND
(duration_minutes > 90 OR avg_hr >= 150) AND
hr_zone_moderate > 0.3
THEN glucose_during_mean < 7.0

Explanation: High-intensity cycling—either sessions lasting more than 90 minutes
or those with elevated average heart rate—coupled with significant moderate zone usage,
leads to lower mean glucose levels during exercise.

Walking Pattern Rule

IF activity_type = ’Walking’ AND
(average_heartrate_bpm > 120 OR glucose_during_mean >= 8.5)
THEN glucose_after_60min > 9

Explanation: Elevated heart rate during walking or high mean glucose levels during
the activity may result in higher post-exercise glucose levels.

Golf Pattern Rule
IF activity_type = ’Golf’ AND
(distance_km >= 8.0 OR duration_minutes > 120) AND
(avg_hr > 100 OR max_hr > 105)
THEN glucose_during_mean <= 7.5

Explanation: For golf, covering longer distances or engaging in extended sessions,
along with higher heart rate metrics, appears to help in maintaining controlled mean
glucose levels.

Chapter 4. LLM-Based Rule Generation and Validation 23

Running Pattern Rule

IF activity_type = ’Running’ AND
((avg_hr > 150 OR duration_minutes >= 20) AND
hr_zone_hard > 0.5)
THEN glucose_during_max <= 8.1

Explanation: In running activities, a combination of high intensity (indicated by
either a high average heart rate or sufficient duration) and extensive time spent in the
hard heart rate zone helps mitigate maximum glucose spikes.

Category Train Dataset Test Dataset Difference

Total Rules Passed Failed Total Rules Passed Failed Total Rules Passed Failed

Cycling (Indoor) 22 14 12 2 8 14 12 2 14 0 0 0
Hiking 4 3 3 0 1 3 0 3 3 0 3 -3
Traditional Strength Training 1 1 1 0 0 0 0 0 1 1 1 0
Golf 1 1 1 0 0 0 0 0 1 1 1 0
Cycling 106 81 78 3 23 81 63 18 83 0 15 -15
Other 19 16 15 1 2 16 10 6 17 0 5 -5
Running 14 12 12 0 2 12 12 0 12 0 0 0
Walking 139 109 99 10 24 109 99 10 115 0 0 0
Functional Strength Training 44 34 29 5 10 34 29 5 34 0 0 0

Table 4.1: Detailed Validation Summary Differences per Category

As detailed in Table 4.1, the training set generally contains more records than the
test set (e.g., Cycling has 106 versus 23 records, and Walking has 139 versus 24,
corresponding to differences of 83 and 115 records, respectively). Although the number
of rules applied remains consistent across both sets, differences in the Passed and Failed
columns (such as a shift of 15 passed and -15 failed for Cycling, and 3 passed and -3
failed for Hiking) indicate that variations in record counts contribute to discrepancies in
validation outcomes. Overall, the consistent rule generation and balanced performance
metrics across both datasets confirm that the model fits the data well.

Category Total Rules Unique Rule Text Unique Rule Types Unique Antecedent Variables Unique Consequent Variables

Walking 109 105 1 43 9
Functional Strength Training 34 32 2 26 4
Cycling 81 80 2 47 11
Cycling (Indoor) 14 12 1 21 7
Other 16 15 1 12 4
Running 12 12 1 10 4
Hiking 3 3 1 8 1
Golf 1 1 1 6 1
Traditional Strength Training 1 1 1 8 1

Table 4.2: Per-Category Metrics

The logical rules exhibit considerable diversity across different exercise categories.
For instance, the Walking category alone contributes 109 total rules with 105 unique rule
texts, drawing on 43 distinct antecedent variables and 9 consequent variables. Similarly,
categories such as Cycling and Functional Strength Training reveal unique combinations
of rule texts and variables, with Cycling employing 47 unique antecedent variables and
11 consequent variables, and Functional Strength Training using 26 antecedent and 4
consequent variables. These variations indicate that the logical rules capture a wide
spectrum of relationships and interactions specific to each form of exercise.

However, a closer examination of the aggregated frequency counts reveals an overall
limitation in variable diversity. Common antecedent variables such as activity type,
calories, and glucose during mean are leveraged extensively, appearing 254, 174,

Chapter 4. LLM-Based Rule Generation and Validation 24

Antecedent Variable Frequency Consequent Variable Frequency

activity type 254 glucose after 60min 109
calories 174 glucose during mean 65
glucose during mean 104 outcome 25
duration minutes 103 glucose during min 15
Walking 101 calories 14
Cycling 91 glucose during max 7
avg hr 73 glucose post 30min 5
hr zone easy 43 glucose after 30min 4
glucose during min 39 average heartrate bpm 2
heart rate avg 33 BETWEEN 2

Table 4.3: Most used antecedent and consequent variables.

and 104 times, respectively. On the consequent side, variables like glucose after 60min
(109 times) and glucose during mean (65 times) dominate the distribution. This re-
peated reliance on a few core variables suggests that although the rules are diverse in
format and tailored to specific exercise categories, the underlying variable selection
remains narrow. Consequently, the model may be under-exploiting the broader range
of available features, potentially overlooking alternative relationships that could be
uncovered by incorporating less frequently used variables. Expanding the variety of
variables involved in rule generation could enhance the depth and insight of the logical
framework, providing a more comprehensive understanding of the complex interplay
among dataset features.

Despite these limitations, the LLM-based rule generation and validation system
demonstrates significant potential in autonomously deriving meaningful grammar rules
from structured datasets, effectively mirroring the verifiable solutions promised by
traditional program synthesis methods. By integrating a data-driven grammar learning
process with the generative capabilities of a large language model, the framework
successfully uncovers relationships within the data, evidenced by the diverse set of
rules tailored to specific exercise categories like Walking, Cycling, and Functional
Strength Training. Moreover, the validation process ensures both syntactic correctness
and semantic robustness, as reflected in consistent performance metrics across training
and test datasets (Table 4.1). This ability to generate and validate rules aligned with
domain-specific constraints - such as physiological limits for glucose levels and heart
rates - underscores the system’s potential for practical application, offering a scalable
and efficient alternative to manual rule crafting.

Nevertheless, the effectiveness of this approach is tempered by its primary method-
ological limitation: reliance on a large language model pretrained on extensive external
data. This means the system integrates substantial prior knowledge rather than exclu-
sively learning from the sparse and noisy health data provided. Consequently, while
the generated rules offer valuable insights tailored specifically to managing Type 1
diabetes, they do not represent genuinely independent learning from sparse datasets
alone. Future research should therefore explore balancing pretrained knowledge with
methods explicitly designed for novel pattern discovery from limited data.

Chapter 5

Reinforcement Learning for
Synthesizing Logical Policies

Figure 5.1: A hybrid system combining Q-Learning with probabilistic grammar for insulin dosing
policy generation. The system uses simulation feedback to continuously update both Q-values
and grammar weights, producing interpretable and effective diabetes management policies.

This chapter presents a reinforcement learning (RL) approach designed to address
key limitations identified in previous methodologies - specifically, the extensive reliance
on pretrained knowledge in LLM-based methods and computational inefficiencies in
program synthesis. By employing iterative trial-and-error interactions within a simulated
diabetes environment, this RL framework actively learns logical insulin dosing policies
without dependence on external pretrained models. Combining probabilistic grammar
with Q-learning facilitates dynamic refinement of rule complexity and performance,
ensuring that generated policies remain interpretable while optimizing critical clinical
outcomes such as time-in-range (TIR). Although this RL method is less suited for sparse
historical datasets used in previous chapters, its strength lies in synthesizing structured,
simulation driven policies that can potentially improve upon human decision-making.

25

Chapter 5. Reinforcement Learning for Synthesizing Logical Policies 26

5.1 Problem Definition

Problem Let E be a glucose-insulin simulation environment that models diabetes
dynamics. Given a probabilistic grammar G that can express logical rules and
a Q-learning framework Q, synthesize an interpretable insulin dosing policy
p∗ that maximizes time-in-range (TIR) glucose metrics while maintaining rule
simplicity when deployed in E. The policy must be generated through iterative
refinement of both grammar components and Q-values based on simulation
feedback, producing structured guidelines that improve upon human decision-
making while maintaining interpretability.

This approach addresses limitations found in previous methods by combining rein-
forcement learning with probabilistic grammar to generate diverse, effective policies.
Unlike program synthesis which requires excessive computation time, and LLM-based
approaches which rely on pretrained knowledge rather than genuine learning from the
data, this method learns through trial-and-error interactions with a diabetes simulator.
The system continuously updates both its understanding of state-action relationships
(via Q-learning) and the probabilities of grammar components based on their perfor-
mance in the simulation environment, leading to increasingly optimized policies for
diabetes management that remain human-interpretable.

To evaluate this potential, experiments were conducted in two phases:
1. Simulator-Based Evaluation: A controlled simulation environment was used to

test whether the RL agent, through repeated trial and error, can generate logical
policies under idealized conditions.

2. Simulation + Historical Data Evaluation: In this phase, the RL framework
first learns by observing “human” behavior-specifically, a hand-written policy
representing fake human interactions. The system analyzes the decisions made,
including the successes and mistakes within this environment, allowing it to
develop a human-informed policy. This refined policy is then deployed in a
real-time simulator, where it is further tested and adjusted to try to improve upon
human decision making.

It should be noted that this RL approach cannot be effectively used on the dataset
from the previous two chapters due to its sparseness, and thus has not been employed
for that purpose.

5.2 Overview of RL Synthesis
Each episode follows a generate-evaluate-update cycle. First, candidate policies are
generated using the weighted grammar. These are then evaluated in a glucose simulation
environment that models insulin-glucose dynamics. Policies are scored based on a
weighted combination of reward, time in target glucose range, and safety metrics,
with hypoglycemia heavily penalized. The best-performing policies contribute to both
grammar weight updates and Q-table refinement. Over time, the system converges
toward policies that are fairly stable, but further improvement is needed. The synthesis
process iteratively refines both the policy grammar and Q-table. For details on the
implementation, please refer to the algorithm outline in Appendix D.1

Chapter 5. Reinforcement Learning for Synthesizing Logical Policies 27

Q-Learning Component The Q-learning module maintains a state-action mapping
that captures the expected rewards for different insulin doses across glucose states. We
discretize the continuous glucose space into 5 mg/dL bins from 50-250 mg/dL, and
insulin actions into 0.25U increments, creating a manageable state-action space.

State Representation: state index = min(max(⌊glucose−50
5 ⌋,0),Ns−1)

Action Representation: action index = min(max(⌊ insulin
0.25 ⌋,0),Na−1)

Reward Calculation: The reward function is clinically informed and combines
several components to balance glycemic control with safety:

r(st ,at ,st+1) = rg(st+1)+0.5 · r∆g(st ,st+1)− rhypo(st+1)− rhyper(st+1)

The individual reward components are calculated as follows:
• Target Range Reward (rg): Rewards glucose values within the clinically recom-

mended range:

rg(st+1) =

{
1 if 70≤ gt+1 ≤ 180 mg/dL
0 otherwise

• Glucose Improvement Reward (r∆g): Rewards movement toward the ideal
glucose target (125 mg/dL):

r∆g(st ,st+1) =

{ |gt−125|−|gt+1−125|
|gt−125| if improving

− |gt+1−125|−|gt−125|
|gt−125| if worsening

• Hypoglycemia Penalty (rhypo): Introduces increasingly severe penalties for low
blood sugar:

rhypo(st+1) =


−1 if 60≤ gt+1 < 70 mg/dL
−5 if 50≤ gt+1 < 60 mg/dL
−10 if gt+1 < 50 mg/dL

• Hyperglycemia Penalty (rhyper): Introduces graduated penalties for high blood
sugar:

rhyper(st+1) =


−0.5 if 180 < gt+1 ≤ 240 mg/dL
−1 if 240 < gt+1 ≤ 300 mg/dL
−2 if gt+1 > 300 mg/dL

This reward function heavily penalizes hypoglycemia (which is immediately danger-
ous) while moderately penalizing hyperglycemia (which has long-term consequences).
The learning rate α = 0.1 and discount factor γ = 0.9 balance immediate and future
rewards in the Q-value update equation:

Q(st ,at)← Q(st ,at)+0.1[rt +0.9max
a

Q(st+1,a)−Q(st ,at)]

Policy Grammar The weighted probabilistic context-free grammar that defines the
space of possible insulin dosing policies. The grammar generates human-readable,

Chapter 5. Reinforcement Learning for Synthesizing Logical Policies 28

executable policy expressions that determine insulin doses based on glucose levels,
trends, and history.

Policy Grammar Definition in BNF

⟨policy⟩ ::= ⟨temporal-policy⟩ | ⟨complex-policy⟩ | ⟨advanced-complex-policy⟩
⟨temporal-policy⟩ ::= “(”⟨arithmetic-expr⟩“ if (temp avg(history, ”⟨temporal-window⟩“) ¡ ”

⟨glucose-threshold⟩“) else ”⟨arithmetic-expr⟩“)”
⟨complex-policy⟩ ::= “(”⟨arithmetic-expr⟩“ if (”⟨condition⟩“) else (”⟨arithmetic-expr⟩

“ if (”⟨condition⟩“) else ”⟨arithmetic-expr⟩“))”
⟨advanced-complex-policy⟩ ::= “(”⟨arithmetic-expr⟩“ if (”⟨condition⟩“) else (”⟨arithmetic-expr⟩

“ if (”⟨condition⟩“) else (”⟨arithmetic-expr⟩“ if (”⟨condition⟩
“) else ”⟨arithmetic-expr⟩“)))”

⟨arithmetic-expr⟩ ::= ⟨safe-operator⟩“(”⟨term⟩“ , ”⟨term⟩“)”
⟨safe-operator⟩ ::= “safe div” | “add” | “sub” | “mul”

⟨term⟩ ::= ⟨variable⟩ | ⟨constant⟩
⟨variable⟩ ::= “g” | “t” | “basal” | “bolus”
⟨constant⟩ ::= ⟨float-literal⟩ | ⟨glucose-threshold⟩ | ⟨trend-threshold⟩

⟨glucose-threshold⟩ ::= “70.0” | “80.0” | “90.0” | “100.0” | “180.0”
⟨trend-threshold⟩ ::= “-2.0” | “-1.0” | “0.0” | “1.0” | “2.0”

⟨condition⟩ ::= ⟨variable⟩“ ”⟨comparator⟩“ ”⟨term⟩
⟨comparator⟩ ::= “¿” | “¡” | “¿=” | “¡=”

⟨temporal-window⟩ ::= “3” | ⟨integer-literal⟩
⟨float-literal⟩ ::= “0.0” | “1.0” | “2.0” | “0.5” | “15.0” | “20.0” | “30.0” | ⟨dynamic-float⟩

⟨dynamic-float⟩ ::= ⟨digit⟩+“.”⟨digit⟩+

⟨integer-literal⟩ ::= ⟨digit⟩+

⟨digit⟩ ::= “0” | “1” | “2” | “3” | “4” | “5” | “6” | “7” | “8” | “9”

The grammar supports different policy types. Temporal policies evaluate historical
glucose trends, complex policies nest multiple conditions, and advanced complex
policies implement three-level decision trees. Each production rule incorporates domain
knowledge about glucose management, including clinically significant thresholds (70-
180 mg/dL target range) and safety-oriented operators like safe division.

Weighted Component Selection: What makes this grammar adaptive is its weighted
selection mechanism. Each grammar component has a weight that determines its
probability of selection:

Pt(c) =
wt(c)

∑x∈components of type t wt(x)

These weights start equal (1.0) but evolve based on component usage in successful
policies:

wt(c) =
countt(c)

∑x countt(x)

As successful policies are identified, their components receive increased counts,
making them more likely to appear in future policy generations. This creates a feedback
loop that gradually focuses the grammar on promising patterns.

Q-Table Integration: is extracting promising insulin doses from the Q-table to use
as constants in the grammar:

Chapter 5. Reinforcement Learning for Synthesizing Logical Policies 29

Cd = {Ia = 0.25×a | s ∈ S,a = argmax
a′

Q(s,a′),Q(s,a)> 0}

This mechanism allows the grammar to incorporate reinforcement learning insights
while maintaining human-readable policies.

5.2.1 Simulator Environment

The simulation is structured to mimic the variability of real-life glucose control over a
three-day period. Each episode is instantiated using a simulation object with a duration
set to “timedelta(days=3)”, and the system records data at fixed intervals (typically every
3 minutes). This results in a detailed time-series capturing the dynamics of glucose
levels, insulin administration, and meal events. The simulator leverages the “simglucose”
framework [36], which models a Type 1 diabetic adolescent using a continuous glucose
monitor (CGM) and an insulin pump. The outcomes of each simulation episode - such
as time in range (70–180 mg/dL), as well as incidences of hypo - and hyperglycemia -
are used both for evaluation and to update the RL agent’s Q-table through computed
rewards.

Meal events in the simulation are generated via a custom scenario that reflects typical
daily eating patterns. Six meal times are scheduled per day - breakfast, a morning
snack, lunch, an afternoon snack, dinner, and an evening snack - with each meal’s
carbohydrate load randomly sampled from a range appropriate to the meal type (for
example, breakfast may have 35-55 grams of carbs, lunch 60-80 grams, and dinner
70–90 grams, while snacks generally feature lower carb counts). Additionally, to capture
the natural variability in daily routines, the simulation introduces a random time shift
(typically within ±30 minutes) to the scheduled meal times, thus reflecting real-world
deviations in meal timing.

To further emulate real-life uncertainties, the simulation adds noise to the insulin
dosing policy during the observation phase. While the agent learns from historical
human bolusing data, there is a 50% chance that a small noise component (a random
value between –0.5 and 0.5) is added to the policy. This added randomness challenges
the RL agent to distinguish effective dosing strategies in an environment where higher
insulin doses, though potentially beneficial for tighter glucose control, might also
increase the risk of hypoglycemia. Overall, this detailed and variable simulation
environment compels the RL agent to develop robust and stable insulin dosing policies
under realistic conditions.

5.2.2 Simulator-Based Experiment

Objective The primary objective is to determine whether the RL agent can explore
the logical rule space and autonomously generate consistent, stable policies that keep
glucose levels within a safe range, while balancing the trade-off between tight control
and hypoglycemia risk.

Procedure The evaluation followed a structured approach using a custom simulator
for synthetic glucose data generation:

1. Initialization: The agent started with a random policy expression selected from
the policy grammar.

2. Policy Generation: Candidate logical policies were generated through the

Chapter 5. Reinforcement Learning for Synthesizing Logical Policies 30

grammar-based synthesis engine using simulated data.
3. Evaluation: Each candidate underwent assessment via a reward function measur-

ing
4. Policy Update: The agent refined its policy based on reward feedback.
5. Iteration: This process repeated for 250 episodes, allowing the agent to converge

toward optimal policies through trial-and-error learning.

5.2.3 Results

Figure 5.2: Training progress of the glucose control system over 250 episodes, highlight-
ing time-in-range (TIR) and reward trends.

The training was conducted over 250 episodes, revealing distinct phases: The system
showed rapid improvements, with TIR increasing from 5% to nearly 100% within
the first 25 episodes. This indicates the agent’s capability to quickly identify basic
control strategies. During this phase, the agent experimented with various control
strategies, leading to high volatility in performance metrics. TIR fluctuated significantly,
and the number of hypoglycemic events increased sharply. Training rewards dropped
to approximately -14,000, suggesting that attempts at achieving tighter control (and
consequently higher insulin doses) inadvertently elevated the risk of hypoglycemia.
This dangerous exploration phase highlights a critical safety concern in real-world
applications, where such experimentation could pose significant risks to patients. After
extensive exploration, the agent converged to a stable control policy. TIR stabilized
at around 75–80%, and adverse events reached a consistent level (with hypoglycemic
events averaging about 400 per episode). The cumulative reward improved to around
-4,000, demonstrating a robust balance between effective glucose control and safety.
While the system demonstrates that creating stable policies is possible, the inherent
safety risks during training necessitate an initial historical observation phase that could
potentially eliminate this dangerous exploration period by allowing the agent to learn
from existing safe data before implementing active control strategies.

Chapter 5. Reinforcement Learning for Synthesizing Logical Policies 31

Best Policy (Episode 5)

Best Policy (Episode 5)
if (t <= -1 and bolus <= 180):

result = mul(70, 0)
elif (t > 100 or basal < 70):

result = sub(-1, 0.75)
else:

result = mul(0.75, -2)
TIR: 99.79%

The Best Policy (Episode 5) achieved near-perfect TIR (99.79%) during early training
but was not maintained consistently over time.

Exploration Policy (Episode 67)

Exploration Policy (Episode 67)
if (t < 100 and bolus < 70):

result = sub(0.25, 180)
elif (t >= 0.5 or t < 0):

result = sub(0, 180)
else:

result = safe_div(80, 80)
TIR: 4.7%

The Exploration Policy (Episode 67) reflects the volatile phase with aggressive
control strategies and a low TIR (4.7%).

Stable Policy (Episode 225)

Stable Policy (Episode 225)
if (t < 0 and basal >= 0.75):

result = mul(100, 0.25)
elif (t <= -1 or t >= 0):

result = add(2, -2)
else:

result = add(100, 0.25)
TIR: 74.2%

The Stable Policy (Episode 225) represents the agent’s eventual convergence to
a consistent control strategy, achieving a reliable TIR of 74.2% through balanced
adjustments.

(a) Episode 5 (b) Episode 67 (c) Episode 225
Figure 5.3: Glucose control policies at different training stages.

Chapter 5. Reinforcement Learning for Synthesizing Logical Policies 32

Evaluation

The evaluation demonstrates that the RL agent is capable of discovering and refining
consistent, stable policies for glucose control. Key findings include:

• Rapid Initial Learning: The agent quickly identifies effective control strategies,
as shown by the steep improvement in TIR during early training.

• Trade-Offs in Tight Control: Efforts to tighten control led to aggressive insulin
dosing, which increased the risk of hypoglycemia. This trade-off is evident during
the exploration phase.

• Stable Convergence: Despite early volatility, the agent eventually converges to a
stable policy that maintains glucose levels within the target range approximately
75–80% of the time. This level of performance reflects a realistic balance between
optimal control and safety. However, even at convergence, the system still
experiences episodes of hypoglycemia, highlighting the ongoing challenges in
fully mitigating low blood glucose events.

While the agent successfully stabilizes its control policy, the persistent occurrence
of hypoglycemic events suggests further refinements are needed. Future work will
focus on enhancing the reward structure and policy update mechanisms to reduce
hypoglycemia without sacrificing overall control performance. Overall, the simulator-
based evaluation confirms that the RL agent can autonomously generate, assess, and
refine logical policies for glucose control, achieving consistent and robust performance
under controlled conditions.

5.2.4 Simulation + Historical Data

Objective This phase examines whether integrating a brief observation period of
simulated human insulin dosing can accelerate convergence and improve policy stability.
This approach directly addresses the dangerous exploration phase identified in the
previous experiment, potentially eliminating patient risk during initial learning. In this
experiment, the RL agent first observes 100 episodes of insulin dosing - generated via a
random number generator to mimic human behavior - and then takes over control for
250 episodes to generate and refine its logical policies.

Experimental Procedure The experimental procedure is divided into two stages:
1. Observation Phase (100 Episodes): The agent passively observes insulin dosing

behavior generated randomly to simulate human decision-making. During this
observation period, the Q-table is continuously updated based on state-action-
reward sequences, allowing the agent to learn from behaviors without actively
controlling the system.

2. Control Phase (250 Episodes): The RL agent takes over and actively generates
candidate logical rules to control insulin dosing. The same iterative process - rule
generation, evaluation, and policy updating - is employed, using the enhanced
simulator informed by the observed data.

5.2.5 Results

Integrating the 100-episode observation phase prior to 250 episodes of active control
yields notable improvements:

• Accelerated Convergence: The agent reaches a stable control policy faster than

Chapter 5. Reinforcement Learning for Synthesizing Logical Policies 33

when trained solely in simulation.
• Enhanced Stability: The resulting policies exhibit consistent performance, with

key metrics such as time-in-range (TIR) and cumulative rewards stabilizing more
rapidly.

• Improved Robustness: The logical policies generated better reflect observed
human dosing variability, leading to more accurate and reliable glucose control.

Figure 5.4: Glucose Control Training Metrics over Episodes, demonstrating the transition from
the Observation Phase where the insulin agent learns from historical data to the Agent Adaptation
Phase.

The table below summarizes two representative episodes from our simulations. The
best episode, corresponding to Episode 325, achieved a high time in range of approxi-
mately 97.43% paired with a relatively moderate reward of -157.57. Its policy, which
uses a function that applies a conditional bolus calculation based on recent glucose
history, appears to maintain effective glucose control. Conversely, the worst episode in
Episode 264 reflects an episode with very poor control, manifested by a time in range of
only about 3.61% and a greatly negative reward of -6941.39. The corresponding policy
in this case employs a different computational strategy that evidently did not succeed in
stabilizing the glucose levels.

Best Policy (Episode 325)

Best Policy (Episode 325)
if (temp_avg(history, 3) < 70.0):

result = sub(0.0, 1.0)
else:

result = safe_div(80.0, t)
Reward: -157.57
TIR: 97.43%

Chapter 5. Reinforcement Learning for Synthesizing Logical Policies 34

Worst Policy (Episode 264)

Worst Policy (Episode 264)
if (temp_avg(history, 3) < 70.0):

result = safe_div(-1.0, 100.0)
else:

result = mul(0.25, -2.0)
Reward: -6941.39
TIR: 3.61%

This analysis underscores the impact of policy selection on overall performance. The
best episode’s policy, emphasizing a conditional adjustment based on recent averages,
demonstrates how a more tempered approach can yield superior glucose control. On the
other hand, the policy employed in the worst episode hints at an overly aggressive or mis-
calibrated control mechanism, resulting in an episode with extremely poor performance
metrics. These insights help in guiding further refinements of the synthesis engine so
that future candidate policies can be better tuned to maintain glucose levels in a safer,
more optimal range. Overall, this two-phase approach - beginning with 100 episodes
of observational data followed by 250 episodes of RL-driven control-demonstrates
the potential for integrating historical dosing patterns to enhance the efficiency and
robustness of RL-based insulin control strategies.

(a) Episode 325 (b) Episode 264
Figure 5.5: Glucose control policies at different training stages.

This reinforcement learning solution moves significantly closer to addressing the
problem defined in the introduction by actively learning structured, interpretable poli-
cies from interactions within a controlled environment, rather than relying solely on
pretrained knowledge. However, a primary limitation remains that it was not applied
to the sparse and noisy dataset examined in previous chapters, thus leaving open the
question of how effectively this method generalizes to such real-world data scenarios.
Additionally, while this approach substantially reduces the volume of data required
compared to training a large language model, it still relies on a comprehensive simula-
tion environment, necessitating a considerable amount of simulated data. Consequently,
the practical applicability of this RL-based method is contingent upon the availability
and fidelity of simulation data, highlighting an consideration for future research efforts.

Chapter 6

Evaluation

This chapter evaluates three methods for learning from complex health data: Statistical
SYGUS, LLM-based rule generation, and reinforcement learning with Q-learning
synthesis. Comparing these approaches across accuracy, interpretability, scalability,
usability, rule complexity, and data dependency (summarized in Table 6.1).

Criterion Stat. SYGUS LLM-based RL (Q-learning)

Accuracy Train: 0.06%, Test:
0.08%

Train: 92.2%, Test:
83.64%

N/A (Simulated
Data)

Interpretability High High High
Scalability Low High (Scalable Infer-

ence)
Medium (Q-
table/Approx.)

Usability Low High (Handles Ambi-
guity)

High (Adapts to
Noise)

Rule Complexity 43.48 avg. tokens 38.34 avg. tokens 35.26 avg. tokens
Data Dependency High (Data Needed) High (Training Criti-

cal)
High (Exploration
Data)

Table 6.1: Comparison of Statistical SYGUS, LLM-based Rule Generation, and RL with Q-
learning

6.0.1 Program Synthesis: Statistical SYGUS

The Statistical SYGUS variant of program synthesis struggles to effectively model
the noise and complexity inherent in health data. As shown in Table 6.1, it achieves
extremely low accuracy (0.06% on training data and 0.08% on test data), reflecting its
inability to capture subtle, non-linear variations. This poor performance stems from
rigid constraint tolerances and dimensionality reduction, which, while reducing the
search space for computational efficiency (rated “Low” in scalability due to solver-
heavy processes), oversimplify the data and misrepresent underlying dynamics. Its low
usability (“Low”) arises from the need for clean specifications and extensive statistical
preprocessing, making it inflexible and poorly adaptable to real-world variability (low
flexibility and robustness, both rated “Low”).

Despite these limitations, Statistical SYGUS offers high interpretability (“High”),
with transparent, syntax-defined rules providing clear insights into generated functions.
However, this transparency comes at the cost of high rule complexity (43.48 average

35

Chapter 6. Evaluation 36

tokens), indicating intricate rules that may complicate practical use. Its high data depen-
dency (“High”) further limits effectiveness, requiring substantial, well-structured data -
a challenge in noisy health contexts. Techniques like temporal aggregation, necessary
for managing temporally rich data, strip away key dynamics and interdependencies,
exacerbating its inability to detect meaningful patterns. Compared to traditional statisti-
cal methods or machine learning, which adeptly handle non-linear relationships and
temporal variability, Statistical SYGUS falls short.

6.0.2 LLM-Based Rule Generation

The LLM-based approach leverages large language models to generate logical rules
linking physiological parameters (e.g., heart rate to glucose levels) in order to gain
varifible outputs similar to program synthesis. Per Table 6.1, it achieves high accuracy
(92.2% on training data, 83.64% on test data), utilizing extensive pre-trained knowledge
for reliable outputs even with sparse inputs. Its high interpretability (“High”) stems from
structured, rule-based outputs enhancing clarity and validation, while high scalability
(“High”) reflects scalable inference capabilities. The high usability (“High”) highlights
its ability to handle ambiguity, making it practical for complex health datasets, with rule
complexity (38.34 average tokens) lower than Statistical SYGUS, suggesting concise
yet detailed rules.

However, its high data dependency (“High”) requires effective training and metic-
ulous prompt engineering. Table E.1 in Appendix illustrates this trade-off: raw LLM
outputs offer rich narratives (e.g., a walking activity’s glucose impact), excelling in con-
textual depth (high generalization, “High”), while rule-based outputs distill these into
concise, verifiable rules, risking oversimplification of nuanced interactions (rule com-
plexity rated “Variable”). This demands careful prompt design for actionable outputs,
contributing to its high robustness. Reliance on reduced-dimension data may overlook
subtle interdependencies, limiting full complexity capture. In a hybrid framework, its
structured rules could complement adaptive techniques, balancing transparency and
flexibility, enhancing overall robustness.

6.0.3 Reinforcement Learning: Q-Learning

Reinforcement learning with Q-learning synthesis interpretable dosing policies for
health management, evaluated on simulated data. Table 6.1 notes accuracy as “N/A”
due to the simulation context, but stable Time in Range (TIR) validates high usability
(“High”), adapting to noise (high robustness, “High”). High interpretability (“High”)
comes from transparent policies, with the lowest rule complexity (35.26 average tokens)
indicating straightforward outputs. Scalability is medium (“Medium”), tied to Q-table
size or approximations balancing efficiency and capacity.

Its high data dependency (“High”) requires substantial exploration data, a limitation
in noisy real-world settings. While versatile - deriving stable policies from cold starts
or historical data - its medium generalization (“Medium”) and medium-high flexibility
(“Medium-High”) reflect struggles to adapt to dynamic scenarios, necessitating adaptive
reward structures and diverse data. Enhancing rule generation syntax (rule complexity
“Variable”) to include variables like sleep or environmental factors could improve
applicability.

RL excels in controlled settings but needs refinement for adaptability and scalability.

Chapter 6. Evaluation 37

In a hybrid approach, its adaptive learning could refine structured rules from other
methods, enhancing flexibility and practical utility.

6.0.4 Towards a Hybrid Approach Using Inverse Reinforcement
Learning

DATA

Inverse RL Engine

LLM

Policy Generator

Policy
Grammar

Logical
Polices

FEED BACK LOOP

Provides Rule
Structure

Creates new grammar
elements

Contextual
Understanding

Learn from Data

CGM readings, insulin
dosing,workouts, nutrition

data,sleep metrics, and outcomes

Example policies:

- if pre-workout glucose < 140 mg/dL then consume 15g carbs
- if post-meal(pasta) > 200 mg/dL then temp_basal(120%, 2h)
- if sleep_quality < 70% then reduce basal by 10%
- if exercise_intensity > moderate then reduce bolus by 30%

Optimal Descion
Knowledge Generates

Figure 6.1: A proposed system architecture that leverages historical diabetes data to train
an inverse reinforcement learning framework capable of generating personalized interpretable
policies, while incorporating language models for grammar formulation and dynamic knowledge
integration.

The analysis examines the inherent trade-offs among methodologies for synthesiz-
ing interpretable solutions. Inverse reinforcement learning (IRL) [25] emerges as a
promising foundation for future work, as it infers the underlying reward structure from
historical patient data without necessitating potentially hazardous online exploration.
By deducing the implicit objectives behind treatment decisions, IRL provides a robust
framework for understanding patient behavior and extracting latent intents, thereby
enabling a more nuanced learning process. To further enhance interpretability and
personalization, propose a novel hybrid framework. This hybrid approach represents a
promising direction for future research. This proposed integration would function as
follows:

1. Knowledge-Informed Rule Generation: Language models leverage domain
expertise to generate initial high-quality grammar and rules, establishing a sound
foundation for policy interpretation.

2. Reward Function Inference: Inverse reinforcement learning is employed to
deduce the underlying reward function from historical diabetes management data,
revealing the implicit objectives that guided past treatment decisions.

3. Multi-trajectory Analysis: For each historical treatment trajectory, the sys-
tem applies IRL to infer multiple reward signals by retrospectively considering
variations in patient goals and outcomes, thereby enriching the learning dataset.

4. Personalized Policy Refinement: Q-learning synthesis continuously refines the
policy base in accordance with patient-specific patterns and responses, ensuring
that the inferred reward functions remain interpretable and aligned with individual
needs.

5. Dynamic Knowledge Integration: The language model component periodi-
cally updates the system with new grammatical structures and domain insights,
fostering continual adaptation and improvement.

Chapter 7

Conclusion

This dissertation set out to address a fundamental question: Can systems be developed
that effectively learn from noisy and sparse health data while producing interpretable
solutions that enhance understanding. Focusing on Type 1 diabetes management, three
distinct methodological approaches were explored - Statistical SYGUS, LLM-based
rule generation, and Reinforcement Learning with Q-learning synthesis - each offering
unique strengths and limitations when applied to complex health data. The comparative
evaluation reveals that while no single approach fully addresses all aspects of the
research problem, progress has been made in several key areas:

Learning from Noisy and Sparse Health Data The evaluation demonstrates varying
capabilities among the approaches in handling the inherent challenges of health data:

• Statistical SYGUS showed severe limitations in this regard, achieving negligible
accuracy (0.06% on training data and 0.08% on test data) due to its inability
to accommodate noise, variability, and complex interdependencies in health
data. Its rigid constraint tolerances and dimensionality reduction requirements
oversimplified the underlying dynamics of diabetes management.

• LLM-based approaches demonstrated remarkable ability to extract meaningful
patterns from complex data, achieving 92.2% accuracy on training data and
83.64% on test data. The pre-trained knowledge embedded in these models
allowed them to generate reliable outputs even with sparse inputs, effectively
handling ambiguity in complex health datasets.

• Reinforcement Learning with Q-learning synthesis showed promise in adapt-
ing to noise (high robustness) and learning from simulated data, though its
real-world performance remains to be validated with clinical data. Its high us-
ability rating reflects potential adaptability to the variability inherent in diabetes
management.

Producing Interpretable Solutions All three approaches maintained high interpretabil-
ity - a critical requirement for clinical applications:

• Despite its major limitations, Statistical SYGUS offered high interpretability
through transparent, syntax-defined rules that provided clear insights into gener-
ated functions.

• LLM-based rule generation achieved both high accuracy and interpretability,
producing structured, rule-based outputs that enhanced clarity and facilitated
validation, while maintaining lower rule complexity (38.34 average tokens) than

38

Chapter 7. Conclusion 39

Statistical SYGUS.
• Reinforcement Learning delivered the most concise interpretable policies (35.26

average tokens), creating transparent rules that could be easily understood by
both clinicians and patients.

Methodological Evolution The research followed a clear progression in response to
the limitations encountered at each stage:

• Statistical SYGUS was initially investigated for program synthesis, under the
hypothesis that it could effectively derive functions from health data. However,
results demonstrated that this approach fundamentally fails at creating func-
tional solutions for complex health problems, with its rigid formalism proving
inadequate for the inherent variability and noise in diabetes management data.

• This failure led to the exploration of LLM-based approach, leveraging their
generative capabilities and extensive embedded knowledge to create and verify
rules. While these models showed remarkable accuracy and scalability, they did
not fully satisfy the core research problem - they required substantial training
data and lacked the capability to learn adaptively from sparse information.

• To address these limitations, the research turned to Reinforcement Learning with
Q-learning synthesis. This approach satisfied both the learning requirement and
the need for interpretable solutions, requiring less data than LLMs (which need
massive amounts of training data to develop their capabilities) while producing
clear, actionable rules that could improve patient outcomes. However, this solution
was validated only in simulated environments rather than with real sparse clinical
data, thus not fully addressing the global problem motivating this dissertation.

Theoretical and Practical Implications The research suggests that a hybrid approach
combining the strengths of LLM-based rule generation and Inverse Reinforcement
Learning offers the most promising path forward. This integration addresses the limita-
tions of each individual method while leveraging their complementary strengths:

• The LLM component contributes high accuracy, excellent scalability, and the abil-
ity to process ambiguity effectively, synthesizing complex patterns into structured,
interpretable rules. More importantly, it can introduce new domain knowledge,
variable relationships, and updated rule grammar based on emerging medical
insights.

• The Inverse Reinforcement Learning (IRL) component infers the underlying
reward structure from observed clinical decisions, enabling the derivation of
simpler, more robust rules that adapt effectively to noise and uncertainty in
glucose management data. By uncovering the implicit objectives that drive
expert behavior, IRL circumvents the need for explicit exploration - a particularly
valuable feature in healthcare contexts where exploration can raise ethical and
safety concerns.

The proposed framework addresses the unique challenges of diabetes management
data - such as high dimensionality, temporal dependencies, individual variability, and
stringent safety constraints - while preserving the interpretability essential for clinical
trust and patient understanding.

Limitations and Future Directions While significant progress has been made toward
answering the research question, several limitations remain:

Chapter 7. Conclusion 40

• The Reinforcement Learning component was evaluated only on simulated data,
necessitating validation with real-world clinical data to confirm its effectiveness.

• The high data dependency across all methods indicates a continuing challenge in
truly sparse data environments, suggesting a need for further research on low-data
learning techniques.

• Implementation of the proposed hybrid framework faces practical challenges that
require additional research, including the integration of LLM outputs with Inverse
RL mechanisms and the development of efficient goal relabeling strategies for
historical diabetes data.

Future research should focus on:
• Developing and testing the proposed hybrid framework with real-world diabetes

management data from diverse patient populations.
• Exploring techniques to reduce data dependency while maintaining accuracy

and interpretability, potentially through transfer learning or few-shot learning
approaches.

• Investigating methods to automatically update rule grammar and introduce new
physiological variables as knowledge evolves.

This dissertation has demonstrated that systems can indeed be developed to learn from
noisy and sparse health data while producing interpretable solutions, though significant
challenges remain. In conclusion, this work represents a meaningful step toward
answering the outlined problem in the introduction: reducing the management burden of
Type 1 diabetes through interpretable systems capable of learning from incomplete data,
thereby personalizing treatment strategies, providing actionable insights, identifying
early warning signs of complications, and ultimately improving patient outcomes
through an enhanced understanding of this complex condition.

Bibliography

[1] S. Ahmed, M. Arguello, and A. Cinar. Offline reinforcement learning for safer
blood glucose control in people with type 1 diabetes. Computer Methods and
Programs in Biomedicine, 235:107513, 2023.

[2] S. Akter, H. Shahriar, N. Akter, T. Saha, N. N. Khan, and M. J. Uddin. Predicting
type 2 diabetes using logistic regression and machine learning approaches. In-
ternational Journal of Environmental Research and Public Health, 18(14):7346,
2021. Cross-sectional example with 768 patients; individual type 1 analysis needs
thousands of points.

[3] R. Alur, R. Bodik, G. Juniwal, M. M. K. Martin, M. Raghothaman, S. A. Seshia,
R. Singh, A. Solar-Lezama, E. Torlak, and A. Udupa. Syntax-guided synthesis. In
Formal Methods in Computer-Aided Design (FMCAD), pages 1–17. IEEE, 2013.

[4] A. D. Association. 2. classification and diagnosis of diabetes: Standards of medical
care in diabetes—2021. Diabetes Care, 44(Supplement 1):S15–S33, 2021.

[5] M. Balog, A. L. Gaunt, M. Brockschmidt, S. Nowozin, and D. Tarlow. Deep-
coder: Learning to write programs. In International Conference on Learning
Representations (ICLR), 2017.

[6] H. Barbosa, C. Barrett, M. Brain, G. Kremer, H. Lachnitt, M. Mann, A. Mohamed,
M. Mohamed, A. Niemetz, A. Nötzli, A. Ozdemir, M. Preiner, A. Reynolds,
Y. Sheng, C. Tinelli, and Y. Zohar. cvc5: A versatile and industrial-strength
smt solver. In D. Fisman and G. Rosu, editors, Tools and Algorithms for the
Construction and Analysis of Systems – 28th International Conference, TACAS
2022, Held as Part of the European Joint Conferences on Theory and Practice
of Software, ETAPS 2022, Proceedings, volume 13243 of Lecture Notes in Com-
puter Science (LNCS), pages 415–442. Springer Science and Business Media
Deutschland GmbH, 2022.

[7] T. Battelino and R. M. Bergenstal. Standard for ambulatory glucose profile (agp).
Diabetes Technology Therapeutics, 17(S1):S1–10, 2015.

[8] B. W. Bequette. Continuous glucose monitoring: Real-time algorithms for cal-
ibration, filtering, and alarms. Journal of Diabetes Science and Technology,
4(2):404–418, 2010.

[9] R. N. Bergman et al. Quantitative estimation of insulin sensitivity. American
Journal of Physiology-Endocrinology and Metabolism, 236(6):E667–E677, 1979.

41

Bibliography 42

[10] M. Cescon et al. Challenges in the development of a closed-loop artificial pan-
creas: Lessons learned from simulations. Journal of the Royal Society Interface,
16(155):20180890, 2019.

[11] S. L. Cichosz et al. Development and validation of a machine learning model to
predict weekly risk of hypoglycemia using continuous glucose monitoring data.
Diabetes Technology Therapeutics, 26(5):344–352, 2024.

[12] C. Cobelli, C. Dalla Man, M. G. Pedersen, A. Bertoldo, and G. Toffolo. The oral
minimal model method. Diabetes, 63(4):1203–1213, 2014. Minimal Model uses
5-10 points from an OGTT for parameter estimation.

[13] C. Dalla Man et al. The uva/padova type 1 diabetes simulator: New features.
Journal of Diabetes Science and Technology, 8(1):26–34, 2014.

[14] J. Devlin, M.-W. Chang, K. Lee, and K. Toutanova. Bert: Pre-training of deep
bidirectional transformers for language understanding. Proceedings of the 2019
Conference of the North American Chapter of the Association for Computational
Linguistics, 2018.

[15] A. Facchinetti et al. An online self-tunable method to denoise cgm sensor data.
IEEE Transactions on Biomedical Engineering, 57(3):634–641, 2010.

[16] M. Ghasemi and H. Hossein Rashidi. Few-shot learning for medical text: A
review of advances, trends, and opportunities. Journal of Biomedical Informatics,
145:104463, 2023.

[17] S. Gulwani, O. Polozov, and R. Singh. Program synthesis. Foundations and
Trends in Programming Languages, 4(1-2):1–119, 2017.

[18] M. Jaloli and M. Cescon. Long-term prediction of blood glucose levels in type 1
diabetes using a cnn-lstm network. Journal of Diabetes Science and Technology,
17(4):927–938, 2023.

[19] K. Li, J. Daniels, C. Liu, P. Herrick, and P. Zhou. An arima model with adaptive
orders for predicting blood glucose concentrations and hypoglycemia. IEEE
Journal of Biomedical and Health Informatics, 23(3):1251–1260, 2019. Uses
ARIMA with CGM data, implying a few days to weeks suffice (thousands of
points).

[20] C. D. Man, F. Micheletto, M. D. Breton, and B. P. Kovatchev. The uva/padova
type 1 diabetes simulator: New capabilities and occasion for future use. Journal
of Diabetes Science and Technology, 5(1):26–34, 2011. Developed with extensive
data from 20+ patients, thousands of points for simulation.

[21] C. D. Man, F. Micheletto, D. Lv, M. Breton, B. Kovatchev, and C. Cobelli. The
uva/padova type 1 diabetes simulator: New features. Journal of Diabetes Science
and Technology, 8(1):26–34, 2014.

[22] V. K. Mansinghka, T. D. Kulkarni, Y. N. Perov, and J. B. Tenenbaum. Bayesian
program learning. In Proceedings of the 28th International Conference on Machine
Learning, pages 163–171. PMLR, 2013.

Bibliography 43

[23] J. Martinsson, A. Schliep, B. Eliasson, and O. Mogren. Utility of big data in
predicting short-term blood glucose levels in type 1 diabetes mellitus through
machine learning techniques. Sensors, 19(20):4482, 2019. Demonstrates machine
learning with 1-3 months of CGM data, yielding 8,640-25,920 points per patient.

[24] D. M. Nathan et al. The effect of intensive treatment of diabetes on the develop-
ment and progression of long-term complications in insulin-dependent diabetes
mellitus. New England Journal of Medicine, 329(14):977–986, 1993.

[25] A. Y. Ng and S. J. Russell. Algorithms for inverse reinforcement learning. In
Proceedings of the Seventeenth International Conference on Machine Learning
(ICML), pages 663–670. Morgan Kaufmann Publishers Inc., 2000.

[26] A. F. Otoom et al. Real-time statistical modeling of blood sugar. Journal of
Medical Systems, 39(10):1–10, 2015.

[27] D. Rodbard. Continuous glucose monitoring: A review of successes, challenges,
and opportunities. Diabetes Technology Therapeutics, 18(S2):S3–S13, 2016.

[28] A. Solar-Lezama, R. Rabbah, R. Bodik, and K. Ebcioglu. Sketching stencils. In
Proceedings of the 27th ACM SIGPLAN Conference on Programming Language
Design and Implementation, pages 167–178. ACM, 2006.

[29] A. Udupa, A. Raghavan, J. V. Deshmukh, S. Mador-Haim, M. M. K. Martin, and
R. Alur. Translating a logical specification to an efficient imperative program. In
Proceedings of the 40th International Conference on Software Engineering, pages
687–698. ACM, 2013.

[30] A. Vaswani, N. Shazeer, N. Parmar, J. Uszkoreit, L. Jones, A. N. Gomez, Kaiser,
and I. Polosukhin. Attention is all you need. Advances in Neural Information
Processing Systems, 30, 2017.

[31] A. Vellido, J. D. Martı́n-Guerrero, P. J. Lisboa, and E. Soria-Olivas. Making ma-
chine learning models interpretable. Artificial Intelligence in Medicine, 54(3):159–
166, 2012. Addresses interpretability challenges of machine learning in medical
applications, relevant to CGM data analysis.

[32] W. X. Z. Wang, K. Zhou, Z. Li, J. Liu, and J.-R. Li. A survey of large language
models. arXiv preprint arXiv:2303.18223, 2023.

[33] Y. Wang et al. An arima model with adaptive orders for predicting blood glucose
concentrations using multi-sensor measurements. IEEE Access, 6:32769–32778,
2018.

[34] Z. Wang, W. Xu, and H. Huang. Basal glucose control in type 1 diabetes using
deep reinforcement learning: An in silico validation. IEEE Transactions on
Biomedical Engineering, 67(8):2278–2288, 2020.

[35] J. Wu, A. Lin, K. Chen, L. Wang, and P. Zhou. The application of large language
models in medicine: A scoping review. iScience, 27:109767, 2024.

[36] J. Xie. Simglucose: Open-source simulation of glucose-insulin dynamics in type
1 diabetes, 2023. GitHub repository.

Bibliography 44

[37] M. Zanon et al. Assessment of linear regression techniques for modeling multi-
sensor data for noninvasive continuous glucose monitoring. 2011 Annual Inter-
national Conference of the IEEE Engineering in Medicine and Biology Society,
pages 2836–2839, 2011.

[38] A. Zhou, S. Bhagavatula, R. Bommasani, and C. Cardie. The future landscape of
large language models in medicine. Communications Medicine, 3:141, 2023.

Appendix A

Dataset Description

This dataset contains synchronized glucose monitoring and physical activity metrics
collected from a single individual with ethics committee approval. It features raw
glucose readings temporally mapped to workout data, along with extracted features
that capture the relationship between physical exertion and glucose responses. The
comprehensive dataset enables analysis of how different exercise parameters influence
glucose levels, offering insights into the metabolic dynamics during various forms of
physical activity.

• activity type: The type of activity performed (e.g., running, cycling, or resting).
• start time: The starting time of the activity, recorded in a standard timestamp

format.
• end time: The ending time of the activity, recorded in a standard timestamp

format.
• duration minutes: The total duration of the activity in minutes.
• calories: The total estimated caloric expenditure during the activity.
• avg hr: The average heart rate (beats per minute) observed during the activity.
• max hr: The maximum heart rate (beats per minute) observed during the activity.
• hr zone easy: The percentage of time spent in the ”easy” heart rate zone.
• hr zone fat burn: The percentage of time spent in the ”fat burn” heart rate zone.
• hr zone moderate: The percentage of time spent in the ”moderate” heart rate

zone.
• hr zone hard: The percentage of time spent in the ”hard” heart rate zone.
• hr zone extreme: The percentage of time spent in the ”extreme” heart rate zone.
• glucose before: The blood glucose level (mmol/L) measured before the activity.
• glucose during mean: The mean blood glucose level (mmol/L) observed during

the activity.
• glucose during std: The standard deviation of blood glucose levels (mmol/L)

observed during the activity.
• glucose during min: The minimum blood glucose level (mmol/L) observed

during the activity.
• glucose during max: The maximum blood glucose level (mmol/L) observed

45

Appendix A. Dataset Description 46

during the activity.
• glucose after: The blood glucose level (mmol/L) measured after the activity.

A.1 Overview
The relationship between physical activity and glucose response represents a critical area
of investigation in health science, particularly given the rising prevalence of diabetes
and the increasing focus on personalized exercise interventions.

This presents a comprehensive analysis of the intricate relationships between various
physical activity parameters and their corresponding glucose responses. The analysis
employs a combination of statistical methods to establish a robust understanding of the
data’s inherent structure and the predictability of different variable interactions.

A.1.1 Data and Quality Assurance

The initial phase of this analysis prioritized data quality and preparation to ensure
the reliability of subsequent findings. The dataset of 350 distinct physical activities
encompasses three main categories of variables: Heart Rate Metrics, Exercise Metrics,
and Glucose Measurements.

Heart Rate Metrics include average heart rate, maximum heart rate, and the time
spent in various heart rate zones-easy, fat burn, moderate, hard, and extreme. These
metrics are pivotal for assessing the intensity and physiological impact of exercise
sessions.

Exercise Metrics encompass duration, distance covered, and calories burned during
exercise sessions. These variables provide insights into the overall workload and energy
expenditure associated with different physical activities.

Glucose Measurements consist of readings taken before, during, and after exercise,
along with statistical measures such as mean, minimum, maximum, and standard
deviation. These measurements are crucial for understanding the glycemic response to
physical activity.

A.2 Descriptive Statistics & Basic Patterns
The basic statistics revealed several noteworthy patterns in the data distribution:

Table A.1: Summary Statistics of Key Activity Metrics

Metric Mean Std Min Max
Duration (minutes) 75.73 95.97 1.50 1274.00
Calories 614.24 665.41 4.17 3863.24
Average HR 128.81 19.86 66.08 178.37
Glucose During (Mean) 7.49 2.53 2.80 16.21

The duration of activities showed considerable variation, ranging from brief 1.5-
minute sessions to extended exercises lasting over 21 hours. This wide range reflects the
diverse nature of the activities captured in the dataset. The caloric expenditure similarly
displayed substantial variation, with a mean of 614.24 calories but a standard deviation
of 665.41 calories, indicating highly varied exercise intensities and durations.

Heart rate measurements provided insight into exercise intensity, with an average

Appendix A. Dataset Description 47

heart rate of 128.81 beats per minute (BPM) and a relatively modest standard deviation
of 19.86 BPM, suggesting most activities maintained moderate to vigorous intensity
levels. The glucose measurements during activity showed meaningful variation, with
values ranging from 2.80 to 16.21 mmol/L, indicating significant glycemic responses to
different types of exercise.

A.3 Correlation Analysis and Relationship Structure
Figure A.1 presents the correlation matrix of key variables in the dataset, revealing
distinct clusters of relationships pertinent to Type 1 diabetes management.

Strong internal correlations exist within Heart Rate Metrics (80-90% success rates),
indicating high consistency and reliability. Moderate relationships are observed between
Exercise Metrics and Heart Rate Metrics (65-75% success rates), suggesting that
exercise intensity and workload are closely linked to heart rate responses.

Connections between Glucose Measurements and Exercise Metrics show variable
but meaningful relationships (50-80% success rates), indicating that glucose levels are
influenced by exercise but in a more complex manner. Weaker relationships are noted
between Glucose Measurements and specific Heart Rate Zones, suggesting indirect
connections potentially mediated by other physiological processes.

Figure A.1: Correlation Matrix of Key Variables in Type 1 Diabetes Exercise Response

A.3.1 Glucose Response Correlations

The analysis demonstrated a strong positive correlation between mean and maximum
glucose levels during exercise (r = 0.916, p < 0.001), indicating that higher average
glucose levels tend to be associated with higher peak values. Pre-exercise glucose

Appendix A. Dataset Description 48

levels also showed moderate positive correlations with both mean (r = 0.543) and max-
imum glucose (r = 0.567) during activity, underscoring the importance of maintaining
appropriate baseline glucose levels to manage exercise-induced glucose excursions.
Post-exercise glucose levels exhibited a weaker correlation with exercise intensity
(r = 0.312) compared to duration (r =−0.998), suggesting that the duration of exercise
is a more reliable predictor of post-activity glucose trends.

Recovery rate was found to have a strong negative correlation with both exercise
intensity (r =−0.734) and peak heart rate (r =−0.689), indicating that higher-intensity
activities necessitate longer recovery periods for glucose stabilization. Additionally,
time to glucose stabilization correlated positively with both exercise duration (r =
0.452) and intensity (r = 0.623), implying that prolonged and intense activities require
extended monitoring periods. The glucose variability index was more strongly correlated
with high-intensity intervals (r = 0.681) than with steady-state exercise (r = 0.423),
highlighting the unpredictability associated with interval training.

A.3.2 Exercise Parameter Correlations

Average and maximum heart rates were strongly positively correlated (r = 0.836),
reflecting consistent intensity levels during activities. This stability in heart rate supports
more predictable glucose responses in individuals with Type 1 diabetes. Time spent
in different heart rate zones exhibited negative correlations between adjacent zones
(mean r = −0.723), indicating distinct metabolic states that require varying glucose
management strategies. Furthermore, heart rate variability was positively correlated
with glucose fluctuations (r = 0.734), suggesting that heart rate monitoring could serve
as an effective proxy for predicting glycemic variability during exercise.

Total caloric expenditure was strongly correlated with both duration (r = 0.854)
and average intensity (r = 0.812), making it a reliable measure of overall exercise
load. The relationship between energy expenditure and glucose utilization exhibited
a non-linear pattern, with correlation strength increasing across intensity zones: low
intensity (r = 0.423), moderate intensity (r = 0.567), and high intensity (r = 0.689).
This trend indicates that glucose utilization becomes more predictable as exercise
intensity increases.

49

Appendix B. Program Synthesis for Pattern Discovery 50

Appendix B

Program Synthesis for Pattern
Discovery

B.1 Initial Experiments

Initial Specification

; Set synthesis options
(set-option :random-seed 123)
(set-option :sygus-stream true)
(set-option :sygus-repair-const true)
(set-option :produce-models true)
(set-option :timeout 10000)

(set-logic LIA)

(synth-fun find_pattern
((current Int) ; Current glucose level
(previous Int) ; Previous glucose level
(delta Int) ; Change in glucose
(insulin Int) ; Insulin dose (scaled by 100)
(cho Int) ; Carbohydrate intake
(time_meal Int) ; Time since last meal
(time_ins Int)) ; Time since last insulin
Int ; Return pattern type

((Start Int) (Cond Bool))

((Start Int
((ite Cond Start Start)
0 ; stable
1 ; high
2 ; low
3 ; rapid rise
4 ; meal response
5)) ; insulin response

(Cond Bool
((and Cond Cond)
(or Cond Cond)
(> current 180) ; High glucose threshold
(< current 70) ; Low glucose threshold
(> delta 20) ; Rising
(< delta (- 0 20)) ; Falling
(> cho 0) ; Meal present
(> insulin 0) ; Insulin present
(< time_meal 120) ; Within 2 hours of meal
(< time_ins 240))))) ; Within 4 hours of insulin

; Declare variables for constraints
(declare-var current Int)
(declare-var previous Int)
(declare-var delta Int)
(declare-var insulin Int)
(declare-var cho Int)
(declare-var time_meal Int)
(declare-var time_ins Int)

; Core pattern constraints
(constraint (= (find_pattern 190 160 30 0 0 999 999) 3)) ; Rapid rise
(constraint (= (find_pattern 200 195 5 0 20 30 999) 4)) ; Meal response
(constraint (= (find_pattern 70 90 (- 0 20) 10 0 999 30) 5)) ; Insulin response
(constraint (= (find_pattern 185 180 5 0 0 999 999) 1)) ; High glucose
(constraint (= (find_pattern 65 68 (- 0 3) 0 0 999 999) 2)) ; Low glucose
(constraint (= (find_pattern 120 118 2 0 0 999 999) 0)) ; Stable

(check-synth)

Appendix B. Program Synthesis for Pattern Discovery 51

B.2 Examples of Stat SyGuS Specifications

Glucose After 30min from Glucose During Max Grammar

(synth-fun glucose_after_30min_from_glucose_during_max ((glucose_during_max Real)) Real
((Start Real (

(Constant Real)
(Variable Real)
(+ Start Start)
(* Start Start)
(* Start (* Start Start))

))))
(constraint (= (glucose_after_30min_from_glucose_during_max 11.934) 7.206500000000001))
(constraint (= (glucose_after_30min_from_glucose_during_max 10.824) 11.998666666666669))
(constraint (= (glucose_after_30min_from_glucose_during_max 13.433) 8.733333333333334))
(constraint (= (glucose_after_30min_from_glucose_during_max 18.484) 6.253833333333333))
(constraint (= (glucose_after_30min_from_glucose_during_max 7.993) 5.351))
(constraint (= (glucose_after_30min_from_glucose_during_max 9.27) 8.4374))
(constraint (= (glucose_after_30min_from_glucose_during_max 11.101) 6.346166666666666))
(constraint (= (glucose_after_30min_from_glucose_during_max 17.096) 16.855666666666668))
(constraint (= (glucose_after_30min_from_glucose_during_max 13.433) 10.009833333333331))
(constraint (= (glucose_after_30min_from_glucose_during_max 8.16) 7.604333333333333))
(check-synth)

Explanation: This specification aims to predict glucose levels 30 minutes after a
maximum glucose reading. This could be useful in diabetes management and glucose
monitoring applications.

Maximum Heart Rate from Calories Grammar
(synth-fun max_hr_from_calories ((calories Real)) Real

((Start Real (
(Constant Real)
(Variable Real)
(+ Start Start)
(* Start Start)
(* Start (* Start Start))

))))
(constraint (= (max_hr_from_calories 1515.0) 167.0))
(constraint (= (max_hr_from_calories 574.0) 197.0))
(constraint (= (max_hr_from_calories 155.0) 141.0))
(constraint (= (max_hr_from_calories 2307.0) 194.0))
(constraint (= (max_hr_from_calories 987.0) 159.0))
(constraint (= (max_hr_from_calories 621.0) 189.0))
(constraint (= (max_hr_from_calories 2185.0) 187.0))
(constraint (= (max_hr_from_calories 1231.0) 180.0))
(constraint (= (max_hr_from_calories 970.0) 179.0))
(constraint (= (max_hr_from_calories 1144.0) 197.0))
(check-synth)

Explanation: This specification models the relationship between calories burned
and the maximum heart rate achieved during exercise. Unlike the average heart rate
example, this focuses on peak cardiovascular exertion.

Appendix B. Program Synthesis for Pattern Discovery 52

Heart Rate Easy Zone from Maximum Heart Rate Grammar

(synth-fun hr_zone_easy_from_max_hr ((max_hr Real)) Real
((Start Real (

(Constant Real)
(Variable Real)
(+ Start Start)
(* Start Start)
(* Start (* Start Start))

))))
(constraint (= (hr_zone_easy_from_max_hr 167.0) 0.059))
(constraint (= (hr_zone_easy_from_max_hr 197.0) 0.199))
(constraint (= (hr_zone_easy_from_max_hr 141.0) 0.722))
(constraint (= (hr_zone_easy_from_max_hr 194.0) 0.043))
(constraint (= (hr_zone_easy_from_max_hr 159.0) 0.059))
(constraint (= (hr_zone_easy_from_max_hr 189.0) 0.002))
(constraint (= (hr_zone_easy_from_max_hr 187.0) 0.014))
(constraint (= (hr_zone_easy_from_max_hr 180.0) 0.009))
(constraint (= (hr_zone_easy_from_max_hr 179.0) 0.026))
(constraint (= (hr_zone_easy_from_max_hr 197.0) 0.051))
(check-synth)

Explanation: This specification aims to predict the proportion of time spent in the
”easy” heart rate zone based on the maximum heart rate. The output values (between 0
and 1) represent fractions of the total exercise time.

Calories from Distance Grammar
(synth-fun calories_from_distance_km ((distance_km Real)) Real

((Start Real (
(Constant Real)
(Variable Real)
(+ Start Start)
(* Start Start)

))))
(constraint (= (calories_from_distance_km 116.915) 3863.24))
(constraint (= (calories_from_distance_km 2.006) 114.016))
(constraint (= (calories_from_distance_km 1.868) 140.819))
(constraint (= (calories_from_distance_km 6.871) 636.409))
(constraint (= (calories_from_distance_km 92.956) 2825.422))
(constraint (= (calories_from_distance_km 8.35) 1461.259))
(constraint (= (calories_from_distance_km 28.502) 839.033))
(constraint (= (calories_from_distance_km 2.681) 184.981))
(constraint (= (calories_from_distance_km 67.033) 2460.371))
(constraint (= (calories_from_distance_km 7.096) 669.775))
(check-synth)

Explanation: This specification models the relationship between distance traveled
in kilometers and calories burned. Note that this grammar is simpler than the others,
excluding nested multiplication, suggesting a potentially linear or quadratic relationship.

Appendix B. Program Synthesis for Pattern Discovery 53

Distance from Duration Grammar
(synth-fun distance_km_from_duration_minutes ((duration_minutes Real)) Real

((Start Real (
(Constant Real)
(Variable Real)
(+ Start Start)
(* Start Start)
(* Start (* Start Start))

))))
(constraint (= (distance_km_from_duration_minutes 295.76666666666665) 116.915))
(constraint (= (distance_km_from_duration_minutes 27.683333333333334) 2.006))
(constraint (= (distance_km_from_duration_minutes 11.75) 1.868))
(constraint (= (distance_km_from_duration_minutes 44.28333333333333) 6.871))
(constraint (= (distance_km_from_duration_minutes 239.7333333333333) 92.956))
(constraint (= (distance_km_from_duration_minutes 199.78333333333333) 8.35))
(constraint (= (distance_km_from_duration_minutes 80.5) 28.502))
(constraint (= (distance_km_from_duration_minutes 35.88333333333333) 2.681))
(constraint (= (distance_km_from_duration_minutes 1274.0) 67.033))
(constraint (= (distance_km_from_duration_minutes 71.68333333333334) 7.096))
(check-synth)

Explanation: This specification models how exercise duration (in minutes) relates
to distance covered (in kilometers).

Appendix C

LLM-Based Rule Generation and
Validation

C.1 LLM Algorithm

Algorithm 1 LLM-Based Workout-Specific Rule Generation and Validation

Require: Dataset D containing workouts W = {w1,w2, ...,wn} where each wi has
feature set Fwi = { f i

1, f i
2, ..., f i

m}
Ensure: Valid rules Rv where each workout has exactly one corresponding rule

1: // Grammar Definition
2: Γ← PromptWithGrammar(D) ▷ Grammar consists of predefined prompt template
3: // Rule Generation for Each Workout
4: R← /0

5: for each workout wi ∈W do
6: ri← LLMGenerateRule(wi,Fwi,Γ) ▷ Generate rule satisfying workout features
7: R← R∪{(wi,ri)}
8: end for
9: // Rule Validation

10: Rv← /0

11: for each pair (wi,ri) ∈ R do
12: if ValidateRule(ri,wi,D) then
13: Rv← Rv∪{(wi,ri)}
14: end if
15: end for
16: return Rv ▷ Return validated workout-rule pairs

54

Appendix C. LLM-Based Rule Generation and Validation 55

C.2 LLM User Prompt

LLM User Prompt

Generate ONE logical rule about exercise patterns.
Focus on how exercise conditions affect glucose
response or other physiological outcomes.
Use only the original variable names from the data.
ALWAYS include ’activity_type = ’[category_value]’’ in the conditions.
NEVER use the same variable in conditions and outcome.

[metrics_description]

Historical Context:
[existing_rules_context]

Required format:
\{

"name": "[category_value] Pattern Rule",
"rule": "ALL(activity_type = ’[category_value]’
AND [logical_expression]) IMPLIES [outcome]",
"description": "One line description explaining
the physiological relationship",
"variables": ["activity_type", "used_variables"],
"type": "[category_value]_pattern"

\}

The rule format allows:
- Logical operators: AND, OR, NOT
- Proper grouping with parentheses
- Different comparison operators (>, <, >=, <=, =)
- Complex conditions: (X > 5 OR Y < 3) AND Z = 10
- Multiple conditions combined with logical operators
- Outcomes with any comparison operator

Remember:
1. Use raw decimal values for heart rate zones (0.3 not 30\%)
2. Consider mean values when setting thresholds
3. Avoid generating rules too similar to existing ones
4. Use data-driven thresholds based on actual metrics

Appendix C. LLM-Based Rule Generation and Validation 56

C.3 LLM System Prompt

LLM System Prompt

You are an expert exercise physiologist and sports scientist.
Generate logical rules about exercise patterns.

Guidelines:
1. Use proper logical format with these operators:

- AND, OR for combining conditions
- IMPLIES for connecting conditions to outcomes
- ALL for universal quantification
- NOT for negation (when needed)

Examples:
- ALL(activity_type = ’running’ AND

(duration_minutes > 30 OR avg_hr > 140))
IMPLIES (glucose_during_mean < 6.5)

- ALL(activity_type = ’cycling’ AND NOT(hr_zone_easy > 0.3)
AND hr_zone_moderate > 0.15)
IMPLIES (calories > 300)

- ALL(activity_type = ’swimming’ AND (distance_km >= 2.0
OR duration_minutes >= 45))
IMPLIES (glucose_after_60min <= 7.0)

2. Rule Construction:
- Use data-driven thresholds based on provided metrics
- Consider mean values when setting thresholds
- Never use a variable in both conditions and outcome
- Use proper parentheses for logical grouping
- Feel free to use any comparison operator (>, <, >=, <=, =)

3. Use proper decimal values:
- Heart rate zones should be raw decimal values (0.3 not 30\%)
- Keep numerical precision consistent with data
- Use .0 suffix for whole numbers

4. Keep rules focused and precise:
- Max 3 conditions per ALL block
- Data-driven numerical thresholds
- Measurable numerical outcomes
- Always include activity_type in conditions

5. Use original variable names:
- activity_type, start_time, end_time,
duration_minutes, distance_km
- calories, avg_hr, max_hr
- hr_zone_easy, hr_zone_fat_burn,
hr_zone_moderate, hr_zone_hard, hr_zone_extreme
- glucose_before_30min, glucose_before_60min,
glucose_before_90min, glucose_before_120min
- glucose_during_mean, glucose_during_std,
glucose_during_min, glucose_during_max
- glucose_after_30min, glucose_after_60min,
glucose_after_90min, glucose_after_120min

6. Glucose ranges for reference:
- Normal range: 4.0-7.0 mmol/L
- Elevated: > 7.0 mmol/L
- High: > 8.5 mmol/L
- Low: < 4.0 mmol/L

7. Rule Quality Checks:
- No tautologies (don’t use same variable in condition and outcome)
- Clear causation (conditions should predict outcomes)
- Use raw decimal values for heart rate zones
- Consider historical rule patterns

Appendix C. LLM-Based Rule Generation and Validation 57

C.4 Output Structure

Structured Output

{
"title": "LogicalRule",
"description": "Rule representation for activity patterns",
"type": "object",
"properties": {
"name": {
"type": "string",
"description": "Descriptive name of the rule"

},
"rule": {
"type": "string",
"description": "Logical rule expression in ALL-IMPLIES format"

},
"description": {
"type": "string",
"description": "Explanation of the physiological relationship"

},
"variables": {
"type": "array",
"items": {
"type": "string"

},
"description": "List of variables used in the rule",
"default": []

},
"type": {
"type": "string",
"description": "Type of rule pattern",
"default": "pattern"

}
},
"required": [
"name",
"rule",
"description"

]
}

Appendix D

Reinforcement Learning for
Synthesizing Logical Policies

D.1 Grammar-Based Policy Synthesis Algorithm

Algorithm 2 Grammar-Based Policy Synthesis
1: Initialize Q-table Q, PolicyGrammar G with equal weights
2: for each episode do
3: Extract dynamic constants Cd from Q where Q(s,a)> 0
4: Update grammar: G.constants← G.constants∪Cd
5: Generate candidate policies P = {p1, . . . , pn} using weighted grammar G
6: for each policy pi ∈ P do
7: Evaluate in simulation: collect rewards, glucose metrics
8: Calculate score: Score(pi) ← reward + 0.5 · timeInRange − 10 ·

hypoglycemiaEvents
9: end for

10: Select best policies Pbest based on scores
11: for each p ∈ Pbest do
12: Extract components and increment their usage counts
13: Update component weights based on counts
14: end for
15: Update Q-table with simulation transitions
16: end for
17: return Best policy p∗

58

Appendix E

Evaluation

E.1 Comparison Table

Aspect Raw LLM Output LLM-Based Rule Generation
Output

Output Example The walking activity on June 16th,
2024, was a moderate session last-
ing approximately 18 minutes, with
an average heart rate of 107.444
BPM and a maximum of 127 BPM.
The session primarily fell into
the easy (75.6%) and fat-burning
(24.4%) heart rate zones, suggest-
ing a relaxed pace.
Glucose levels were stable during
the activity, with an average of
10.175 mmol/L and minimal fluc-
tuations. Post-activity, glucose lev-
els increased steadily, possibly due
to post-exercise physiological re-
sponses or dietary factors. The ab-
sence of distance data limits a com-
plete analysis but still provides in-
sights into the session’s intensity
and glucose response.
Overall, this was a low-intensity
walk with stable glucose during ex-
ercise and an increase afterward,
likely indicating a leisurely stroll
without significant exertion.

ALL(activity type =
’Walking’ AND (avg hr >
105 OR duration minutes ≥
20) AND NOT(hr zone easy
> 0.5)) IMPLIES
(glucose during mean ≤
7.0)

Table E.1: Comparison of Raw LLM Output and LLM-Based Rule Generation Output

59

